

LABE overview

- The INFN-Roma LABE supports the experiments with electronics design and prototypes
- Three main services:
 - R&D, CAD and IT:
 - board design (schematics and layout)
 - Electronics workshop:
 - dedicated instrumentation for fast prototyping of 2-layer PCB
 - advanced inspection instruments for assembly and reworking of SMD parts
 - "LABE aperto":
 - experimental set-up, "free" access
 - benches with reworking stations
 - oscilloscopes
 - generators and power sources
 - thermal chamber

Staff:

- Manlio Capodiferro
- Giacomo Chiodi
- Antonio Girardi
- Riccardo Lunadei
- Luigi Recchia
- Daniele Ruggeri
- Piero Sestito
- Lorena Stellato

- The INFN-Roma LABE supports the experiments with electronics design and prototypes
- Three main services:
 - R&D, CAD and IT:
 - board design (schematics and layout)
 - Electronics workshop:
 - dedicated instrumentation for fast prototyping of 2-layer PCB
 - advanced inspection instruments for assembly and reworking of SMD parts
 - "LABE aperto":
 - experimental set-up, "free" access
 - benches with reworking stations
 - oscilloscopes
 - generators and power sources
 - thermal chamber

LABE overview

- The INFN-Roma LABE supports the experiments with electronics design and prototypes
- Three main services:
 - R&D, CAD and IT:
 - board design (schematics and layout)
 - Electronics workshop:
 - dedicated instrumentation for fast prototyping of 2-layer PCB
 - advanced inspection instruments for assembly and reworking of SMD parts
 - "LABE aperto":
 - experimental set-up, "free" access
 - benches with reworking stations
 - oscilloscopes
 - generators and power sources
 - thermal chamber

PCB Milling machine

Digital Stereo Microscope (7x ÷ 120x)

LABE overview

- The INFN-Roma LABE supports the experiments with electronics design and prototypes
- Three main services:
 - R&D, CAD and IT:
 - board design (schematics and layout)
 - Electronics workshop:
 - dedicated instrumentation for fast prototyping of 2-layer PCB
 - advanced inspection instruments for assembly and reworking of SMD parts
 - "LABE aperto":
 - experimental set-up, "free" access
 - benches with reworking stations
 - oscilloscopes
 - generators and power sources
 - thermal chamber

Expertise	# experienced people
High-speed digital PCB design	5
SMD/SMT reworking	5
Analogue design	1
Fast PCB prototyping (no BGA, max 2 layers)	3
Firmware development (C++)	1
FPGA development	1
Lab IT	1
Cabling	3
Mechanics for electronics	1

LABE criticalities

- Cadence license halt:
 - abruptly stop of running projects (3 revisions and 1 brand new)
- At the end, useful push to evaluate new software:
 - Altium (5 licenses from this year)
 - KiCAD (open source CERN project)
 - Mentor Graphics (10 seat license)

LABE future plans

- Future systems require boards based on big and powerful FPGAs:
 - SoC (System On Chip)
 - SoM (System on Module)
- A dedicated person with FPGA skills is mandatory

BACKUP SLIDES

- CSN 1:
 - o Atlas
 - o LHCb
 - o PADME
 - o MEG
- CSN 2:
 - KM3
 - Darkside
- CSN 3:
 - FOOT
 - JLAB12 (BDX, Altro)
- CSN 5:
 - CHIR2

PCB design

The LHCb muon Front-End electronic control system

- Board overview
 - 3 multilayer (up to 10) designs
 - matched impedance wires (1-80-4000 Mbps)
 - Standard VME 6U fit

- Components overview
 - Custom CERN RadHard ASIC (GBT family)
 - low density Flash-based FPGA (IGLOO2)
 - Optical transceiver (SFP form factor)

PCB design

ATLAS NSW sTGC Pad trigger

ATLAS RPC BIS78 Pad trigger

- Board overview
 - 1 multilayer (up to 14) designs
 - matched impedance wires (@ 360Mb/s, @6Gb/s)
 - Custom form factor

- Components overview
 - Custom CERN RadHard ASIC (GBT family)
 - High density FPGA (Kintex-7)
 - Optical transceiver (SFP form factor)
 - High speed connectors (Molex??)

Board design: BDX experiment Front End readout

- Board overview
 - multilayer design
 - matched impedance wires
 - Standard VME 6U fit

- Components overview
 - 12 channel digitizer 14bit@250MHz
 - SiPM HV on board
 - COTS SOM (Zynq Based)
 - White Rabbit Enabled
 - Optical transceiver (SFP form factor)

PCB design

- SMASH (CHIR2)
 - Very small for factor
 - Aptina 1Mpix MT9x cmos sensor
 - MIPI interface (sub-LVDS up to 750Mbps)
 - Single micro-HDMI

- PADME
 - Fast output SiPM (SENSL)
 - Fast Preamp electronics
 - 4-ch for time-of-flight measurements
 - Front end evaluation board

- DaVinci probe (CHIR2)
 - 6-ch SiPM readout
 - Miniaturized form factor
 - Micro coaxial cables
 - Endoscopic applications
 - Mate with WaveBoard

Other activities

Other electronics R&D topics not related with PCB CAD

- Multitony (Bullkid)
 - two 19" 1U sub-rack
 - 2.4 and 1 GHz
 - 200 MHz bandwidth
 - Ultra-low noise DC-DC modules
 - Ethernet control module

- FOOT
 - 6 SiPM
 - series connection
 - 1 readout channel

- Acoustic-WTS (MEG)
 - wire tension measurements of MWPC
 - Audio amplifiers
 - Adaptive filtering for 50Hz interference reduction
 - Mate with a NI DAQ (16-ch ADC)

Conclusions

- Lesson learned from the "Waveboard experience" we understood the benefits of a common library of modules (schematic + routing):
 - ✓ design reuse and modularity, in particular the design gains:
 - Flexibility
 - ✤ Reliability
 - Time to data
 - ✓ Focusing on specific tasks (dc-dc layout, firmware development, etc.)
 - ✓ Know-how increase
 - ✓ Manpower optimization
 - ✓ Team building

We believe that a central repository of libraries, sources and manuals can really contribute to speed up the design of the equipment for experiments

- Of course this do not come for free:
 - It is required to adhere to a common design standard
 - Each user has access to projects: protection required
 - CAD and Software tool may need specific licensing features