Double Beta Decay [+ CEvNS]

Laura Cardani Ritiro di Sezione, Giugno 2019

Double Beta Decay

Transition among isobaric isotopes in which Z changes by 2 units

- Rare processes: 10¹⁸-10²¹ yr
- Their measurement of primary interest for nuclear physics
- Distortion in their signatures could be hint of New Physics

Neutrinoless Double Beta Decay

Transition among isobaric isotopes in which Z changes by 2 units

• (Only process that) can establish Majorana nature of v

- Violates lepton number conservation (actually also B-L)
- The lowest order operator for B-L causes 0vββ and gives Majorana mass: probe new mass mechanisms
- Insight in neutrino absolute mass via m_{ββ}

L. Cardani, INFN Roma

Prospects for the near future

• Some experiments attacking/approaching the IH (also part of NH covered)

• Plan for next 5-10 yr: full coverage of IH region

CUORE

- Tonne-scale experiment operating 206 kg of ¹³⁰Te (988 TeO₂ crystals, 15 tons of Pb, Cu, TeO₂ at <4K)
- Excellent resolution 7.4 keV FWHM (0.2%)
- Combined with its ancestors, $T_{1/2}$ >1.5x10²⁵ yr, aiming at 10²⁶ yr in 5 yr

From CUORE to CUPID

The first CUPID prototype

- First medium-scale prototype: CUPID-0 proved rejection of α bkg
- Sensitivity: 5x10²⁴ yr with 5.3 kg x yr
- Upgrade (early 2019) and now in run II

CUPID-0 collaboration, Phys.Rev.Lett. 120 (2018) no.23, 232502 CUPID-0 collaboration, Eur. Phys. J. C78 (2018) no.11, 888

INFN - Roma

People of our Department involved in cuore/cupid0:

F. Bellini, L. Cardani, N. Casali, C. Cosmelli, A. Cruciani, I. Dafinei, F. Ferroni, V. Pettinacci, C. Tomei, M. Vignati

Main expertise:

- Growth of large radio-pure crystals
- Detector design and construction in radio-pure environment
- Cryogenic facilities
- Software and Data analysis

Next 5-10 years perspectives:

- Design and construction of tonne-scale experiment CUPID
- Search for 0nDBD and other processes beyond SM

Current Weaknesses or Desirable Skills

- Simulations
- Phenomenology (charge non conservation, Lorentz invariance, CPT violations, Pauli exclusion principle, tri-nucleon decays, ...)

Credits ^C DAMA and DAMA-Kiev results in the search for double β decay

Profiting of the low background features of its set-ups, DAMA has achieved competitive results in the investigation of many rare processes and double beta decays

First or improved results for 2β decays of ~30 candidate isotopes: ${}^{40,46,48}Ca$, ${}^{64,70}Zn$, ${}^{100}Mo$, ${}^{96,104}Ru$, ${}^{106,108,114,116}Cd$, ${}^{112,124}Sn$, ${}^{134,136}Xe$, ${}^{130}Ba$, ${}^{136,138,142}Ce$, ${}^{150}Nd$, ${}^{156,158}Dy$, ${}^{162,170}Er$, ${}^{180,186}W$, ${}^{184,192}Os$, ${}^{190,198}Pt$

The best experimental sensitivities in the field for 2β plus decays:

- $\Rightarrow 0\nu\epsilon\beta^{+} \text{ or } 0\nu2\beta^{+} \text{ decays may refine the mechanism of the } 0\nu2\beta^{-} \text{ decay}$ (Majorana ν mass ν s right-handed admixtures in the weak interaction)
- \Rightarrow Possible resonant enhancement of the capture rate for $0\nu2\epsilon$, due to a mass degeneracy between the initial and final nucleus

Recent DAMA results

AURORA experiment Two ¹¹⁶CdWO₄ crystal scintillators enriched at 82%, mass=1.16 kg, T~4yr \checkmark $T_{1/2}$ (2v2 β) = 2.63 $^{+0.11}_{-0.12} \times 10^{19}$ yr (the most accurate value) \checkmark $T_{1/2}$ (0v2 β) \ge 2.2 $\times 10^{23}$ yr (the best limit for 116 Cd) $\Rightarrow \langle m_{v} \rangle <$ (1.0-1.7) eV

¹⁰⁶CdWO₄ crystal scintillator (¹⁰⁶Cd @ 66%) in coincidence with two CdWO₄ Sensitivity to $2v\epsilon\beta^+$: $T_{1/2} > 4 \times 10^{21}$ yr (theoretical: $10^{20} - 10^{22}$ yr)

Highly purified Nd₂O₃ source (2.38 kg) in **GeMulti** (4 HPGe) set-up Study of double coincidences from $2\beta 2\nu \text{ decay } {}^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(O_1^+, 740.5 \text{ keV})$ $\Rightarrow T_{1/2}=[4.7^{+4.1}-1.9(\text{stat})\pm 0.5 \text{ (syst)}] \times 10^{19} \text{ yr}$ in agreement with previous results Preliminary results in Nucl.Phys.At.Energy 19(2018)95

credit^s Search for $\beta\beta$ decay modes in various isotopes at DAMA and

> New measurements with highly purified samples installed on HPGe detectors of the STELLA facility

> R&D of radio-pure Gd₂SiO₅(Ce), SrI₂(Eu),¹¹⁶CdWO₄ crystal scintillators to study 2 β decays of ¹⁵²Gd, ¹⁶⁰Gd, ⁸⁴Sr, ¹¹⁶Cd

INFN - Roma

People of our Department involved in DAMA (DAMA/Kiev): F. Cappella, A. Incicchitti, A. Mattei

Main expertise:

- Growth of highly radio-pure scintillation crystals
- Detector design and construction in radio-pure environment
- Simulations and Data Analysis

Next 5 years perspectives:

- Development of new highly radio-pure scintillation crystals, also enriched in the isotope of interest
- Measurement and optimisation of detector performances
- Measurements on double beta decay and other rare processes
- Simulation and Data analysis

Neutrino-nucleus coherent scattering

Credits to M.Vignati Experimental Challenge

 $\begin{array}{l} \text{Coherent Elastic v-Nucleus Scattering} \\ \nu(\bar{\nu}) + A \rightarrow \nu(\bar{\nu}) + A \end{array}$

Inverse Beta Decay $\bar{\nu} + p \rightarrow n + e^+$

First detection in 2017 using scintillating crystals exposed to a spallation neutron source D. Akimov et al Science 357 (2017), 1123

Increasing interest in high precision measurements

Credits to M.Vignation Physics Opportunities

- sen²(θ_w) at low Q
- Non standard interactions (μ_ν, Z'..)
- Sterile neutrinos
- Background for DM experiments
- Non proliferation

NUCLEUS: Cryogenic detector at 70-100 m from the CHOOZ reactors.

INFN - Roma

People of our Department involved in NUCLEUS (DE) and BullKID (IT):

F. Cappella, L. Cardani, N. Casali, I. Colantoni, A. Cruciani, C. Tomei and. M. Vignati

Main expertise:

- Development of cryogenic detectors (Angelo's talk)
- Cryogenic facilities
- Radioactivity
- Simulations

Next 5 years perspectives:

- Development of next generation detectors for CEvNS
- Feasibility study of ⁵¹Cr (from GALLEX source) instead of reactor

Bellenghi et al, arXiv:1905.10611

Current Weaknesses or Desirable Skills

- Fabrication of superconducting detectors
- Electronics for microwave detectors

Conclusions

- Double Beta Decay is a unique probe for New Physics
 - Lepton Number Violation
 - Neutrino Nature

0vββ Decay e⁻ e⁻

- Active field, with projects <hundreds M\$
- Down-selection of 2-3 technologies for the long-term future

- Since its observation, CEvNS got a lot of interest
- Now precision measurements in which we can play an important role