Valerio Ippolito & Livia Soffi INFN Sezione di Roma / Sapienza Università di Roma

THE PRECISION FRONTIER AT THE LHC

status and perspective of SM precision physics

The Big Picture

 ATLAS and CMS precisely measure SM processes involving gauge bosons, top quarks and Higgs boson

- Multiple interdependent parameters measured separately
- Very high cross-section processes used to calibrate our objects/MC
- Complementarity **Beyond-the-standard-model searches:** deviations from SM
- Many opportunities at Run3 and HL LHC

W/Z production via / DY processes

- Observables sensitive to both QCD and EW sectors of the Standard Model
- Theory cross sections computed up to NNLO in QCD and NLO in EW
- Total and differential cross-sections sensitive to the proton structure(PDFs)
- Purely leptonic decays are a very clean experimental signature

In the SM, 3 parameters (g, g', v) defines the EW sector connected to observables:

$$M_W = \frac{v |g|}{2}, \qquad M_Z = \frac{v \sqrt{g^2 + {g'}^2}}{2}, \qquad \cos\theta_W = \frac{m_W}{m_Z}$$

- Mass of the W (Z) measured at LHC and Tevatron (LEP) with millions of events
- Weak mixing angle Θ_W from precision Z measurements

Mw measurement at LHC I

 Current ATLAS measurement (4.7 fb⁻¹ data @ 7 TeV) of mw performed using 1D pit, ptmiss and mt distributions

$$\vec{p}_{\mathrm{T}}^{\mathrm{miss}} = -\left(\vec{p}_{\mathrm{T}}^{\ell} + \vec{u}_{\mathrm{T}}\right) \quad m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell}p_{\mathrm{T}}^{\mathrm{miss}}(1 - \cos\Delta\phi)}$$

- u_{T} being the recoil provides an estimate of the W boson p_{T}

M_w measurement at LHC II

$m_W = 80370 \pm 7(\text{stat.}) \pm 11(\text{exp.}) \pm 8.3(\text{QCD}) \pm 5.5(\text{EWK}) \pm 9.2(\text{PDF}) \text{ MeV}$

- PDFs determine the W rapidity spectrum and lepton decay angles through W polarization
- **PDFs** large role at the LHC w.r.t Tevatron: pp need sea quarks (25% vs 5% second generation quark)
- W p_T in relevant region driven by large logarithms in QCD calculation
- Current measurement using Z pt to constrain W,
- Better direct measurement w/ low pileup runs
- Better understanding of heavy-favour PDFs

20

10

15

25

30

35

40

p[∥] [GeV]

LHC - ALTE ENERGIE PRECISIONE

Z boson: the Standard Candle

- Energy calibrations, lepton-selection efficiencies and missing energy calibration of detector response impacts both precision measurement and searches
- Z(II)+jets event sample allows several validation and consistency tests of detector performances

THE CASE OF $sin^2\theta_{eff}$

Valerio Ippolito INFN Sezione di Roma

 $q\bar{q} \to Z/\gamma^* \to \ell^+ \ell^-$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

what's the qbar direction?

- easy at LEP
- LHC: only if Z is boosted
 - → forward region
 - → challenge for lepton ID!

THE ASYMMETRY

Future Prospects in Precision Physics at HL LHC

HL-LHC: @14 TeV w/ Inst. Lumi 7.2×10³⁴ cm⁻²s⁻¹, <mu> ~200

New detectors and methods

Improved statistics and systematics

- ML techniques, New Triggers, Timing Detectors
- Extended **acceptance** and forward topologies

• Experimental unc. at the level of statistical uncertainties

- Reduced theory and PDF uncertainties
- <u>Global EW fit</u>
- M_W , m_t , and M_H

 θ_W

– VBF

<u>Multiboson processes</u>

- VBS
- Triple and quartic couplings
- Probe high dim operators and NP

THE FUTURE OF $sin^2\theta_{eff}$

- planned ATLAS/CMS eta extension improves stats gets 30% better, PDFs 20% better
- LHCb Upgrade II can beat the LEP+SLD combo
 300 fb-1 and fully-software trigger (lepton (pT1, PT2) > (20, 5) GeV)
- constrain PDF uncertainties with N-differential DY?

m_{ll}, p_T...

WHAT IF WE ADD A TIMING DETECTOR?

- to suppress pile-up, measure when (aka where) jets are produced
 - reject forward jets which look like electrons: 20% better sensitivity
- combined precision on $sin^2(\theta_{eff})$: $(18\pm16_{[PDF]}\pm9_{[exp]})x10^{-5}$
 - more precise than all single-experiment result so far

experiment	energy	what	how precisely
LEP-I	mZ	Z properties	‰
LEP-II	from diboson threshold to 208 GeV	off-shell Z properties, trilinear gauge interactions	%
LHC	13 TeV COM	H couplings	10% ?

HOW? OBLIQUE PARAMETERS

→ HepData / Rivet routines for differential measurements are important...

$$(x - t - t)^{-2t} (s - w - t$$

W

 m_W^2

WHY DRELL-YAN?

 $LHC \sim LEP$

LHC > LEP!

Valerio Ippolito INFN Sezione di Roma

WHAT REALLY MATTERS: TAILS AND LUMINOSITY

• tails matter!

- 13 TeV: region up to mass ~ 2 TeV
- statistically dominated (next: lepton energy scale and EW uncertainties)
- can do the same with dijet

WHAT REALLY MATTERS: UNCERTAINTIES

• tails matter!

- 13 TeV: region up to mass ~ 2 TeV
- statistically dominated (next: lepton energy scale and EW uncertainties)
- can do the same with dijet

PDF UNCERTAINTIES

- significant reduction in PDF uncertainties due to large HL-LHC statistics foreseen
 - crucial for all EW observables!

high-mass DY

Q = 100 GeV

U^{doriginal}

1.2

1.1

PDFs: EXPERIMENTAL CHALLENGES

- PDFs don't reproduce low-x data from HERA
 - affects Higgs at FCC!

 $e^+p \rightarrow e^+X$ (NC)

HERA1+2 Data $Q^2 = 3.5 \text{ GeV}^2$

Theory + shifts — NNLO

0.001

 δ uncorrelated

δ total

0.0001

- due to low-x resummation?
 - answer with low-mass DY (at higher Q²)
 - lepton trigger is a challenge!

Valerio Ippolito INFN Sezione di Roma

Theory/Data

σ red

0.8E

0.6

0.2⊢

1.2⊦

W mass at HL LHC

• Special **low pile-up collision data** at the HL-LHC (and HE-LHC) of large interest for W boson physics.

@14 TeV	$L = 5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	<mu> = 2</mu>	2x 10 ⁶ events/week	10 MeV stat. unc.

- First quantitative study of the potential improvement in the W-boson mass considering only statistical and PDF uncertainties.
- Experimental uncertainties maintained at a level similar to the statistical uncertainty
- Events are selected by applying Run2 cuts to the object kinematics

HL LHC Longitudinal VBS

Polarized WZ and ZZ can be measured in similar way w/ 2D fit to mjj and opening angle2
 LHC - ALTE ENERGIE PRECISIONE

Conclusions

Both theory and LHC experiments are moving into an high precision era

LHC can improve precision observables and global SM fit

• PDF uncertainties are often a limitation

overcome with differential cross-section measurements (e.g. $sin^2(\theta_{eff})$)

• SM-EFT highlights complementarity with LEP

examples in Drell-Yan and di-jet production

 Detector acceptance upgrade and advanced experimental techniques for HL-LHC is crucial

forward region is the only hope for a pp collider

 Improved measurements may further confirm the validity of the SM or indicate deviations which could point to new physics

Backup

THE ELECTROWEAK CORRECTION NIGHTMARE

35.9 fb⁻¹ (13 TeV)

(lv)+jets / γ+jets Data

W(lv)+jets / γ+jets MC

Z(ll) / gamma+jets Z(ll) / W(lv)+jets W(lv) / gamma+jets 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) W(hv)+jets / γ +jets / W(lv)+jets 0.22 0.22 2)+jets / W(lv)+jets Data CMS)+jets / γ+jets Data CMS CMS 0.2 0.2 1.8 monojet monoiet monojet Z(II)+jets / W(hv)+jets MC Z(II)+jets / γ+jets MC 0.18 1.6 0.16 1.4 Z(II)+jets 0.14 1.2 0.12 0 0.8 0.08 0.6 0.06 0.4 0.04 0.02 0.02 0.2 0

- Data / Pred Data / Pred 05 0.5 1200 400 400 400 600 800 1000 1400 600 1200 1400 600 800 1000 1000 1200 1400 Hadronic recoil p₋ [GeV] Hadronic recoil p₋ [GeV] Hadronic recoil p₋ [GeV]
 - new physics searches often in invisible final states
 - e.g.: WIMP pair in association with jets ("mono-jet")
 - obvious background: Z(vv)+jets

1.5

estimated from leptonic Z, W decays and gamma+jets (high stats!)

1.5

<u>search</u> sensitivity limited by EW (and QCD) uncertainties!

Z(II)+jets / γ +jets

0.18

0.16

0.14

0.12

0.

0.08

0.06

0.04

1.5

Data / Pred

THE IMPORTANCE OF BEING FORWARD

ELECTROWEAK FIT

Valerio Ippolito INFN Sezione di Roma

OBLIQUE PARAMETERS

ELECTROWEAK FIT

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d, \text{ with } \mathcal{L}_d = \sum_i C_i \mathcal{O}_i^{(d)}, \quad \left[\mathcal{O}_i^{(d)}\right] = d$$

Valerio Ippolito INFN Sezione di Roma

100 TeV, OR HOW TO APPROACH RETIREMENT

"quota 100" zoomed in

2

-2

-4

pp→/⁺/⁻

 $pp \rightarrow / v$

-2

Υ×10⁵

solid: 100TeV, 3ab⁻¹

dashed: 100TeV, 10ab⁻¹

2

4

"quota 1"

< 10 TeV region important

0

W×10⁵

Valerio Ippolito INFN Sezione di Roma

THE IMPORTANCE OF BEING DIJET

dijet mass

inclusive jet p_T

- sensitive to gluon propagator modifications:
- obvious caveat: use LHC data for PDFs?
- 0(1) new physics effects
- PDF uncertanties limit sensitivity...

THE IMPORTANCE OF BEING DIJET: UNCERTAINTIES

100 TeV

13 TeV

- sensitive to gluon propagator modifications:
- obvious caveat: use LHC data for PDFs?
- 0(1) new physics effects
- PDF uncertanties limit sensitivity...

 $\frac{Z}{4m_W^2} \left(D_\rho G^A_{\mu\nu} \right)$

LHC vs Tevatron

Tevatron results

CDF experiment:

Phys. Rev. Lett.108 (2012) 151803

electron/muon channels 2.2 fb⁻¹ integrated luminosity

mw= 80387±12(stat)±15(syst) MeV

D0 experiment:

Phys. Rev. Lett. 108 (2012) 151804

electron channel ~5.3 fb⁻¹ integrated luminosity

mw= 80375±11(stat)±20(syst) MeV

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal	2
Backgrounds	3
$p_T(W)$ model	5
Parton distributions	10
QED radiation	4
W-boson statistics	12
Total	19

	4	ΔM_W (Me	V)
Source	m_T	p_T^e	E_T
Electron energy calibration	16	17	16
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	5	6	14
Electron efficiencies	1	3	5
Backgrounds	2	2	2
Experimental subtotal	18	20	24
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
Production subtotal	13	14	17
Total	22	24	29

LHC PDFs

W mass ATLAS - Background Summary

W mass ATLAS - Uncertainties Summary

W-boson charge		7+	W	7-	Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

$ \eta_{\ell} $ range	[0.0	0,0.8]	[0.3	8, 1.4]	[1.4	4, 2.0]	[2	.0, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}								
δm_W [MeV]										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and										
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7

W mass ATLAS - Uncertainties Summary

[0.0	0, 0.6]	[0.0	6, 1.2]	[1.82	2, 2.4]	Com	bined
p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
	$[0.0]{p_{\rm T}^{\ell}}$ 10.4 5.0 2.2 2.3 10.5 10.4 0.2 0.2 19.0	$\begin{bmatrix} [0.0, 0.6] \\ p_{\rm T}^{\ell} & m_{\rm T} \end{bmatrix}$ $\begin{bmatrix} 10.4 & 10.3 \\ 5.0 & 6.0 \\ 2.2 & 4.2 \\ 2.3 & 3.3 \\ 10.5 & 8.8 \\ 10.4 & 7.7 \\ 0.2 & 0.5 \\ 0.2 & 0.2 \\ 19.0 & 17.5 \end{bmatrix}$	$ \begin{bmatrix} [0.0, 0.6] & [0.0] \\ p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} \\ \end{bmatrix} $ $ \begin{bmatrix} 10.4 & 10.3 & 10.8 \\ 5.0 & 6.0 & 7.3 \\ 2.2 & 4.2 & 5.8 \\ 2.3 & 3.3 & 2.3 \\ 10.5 & 8.8 & 9.9 \\ 10.4 & 7.7 & 11.7 \\ 0.2 & 0.5 & 0.3 \\ 0.2 & 0.2 & 0.2 \\ \end{bmatrix} $		$ \begin{bmatrix} [0.0, 0.6] & [0.6, 1.2] & [1.82] \\ p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} \\ \end{bmatrix} \\ \begin{bmatrix} 10.4 & 10.3 & 10.8 & 10.1 & 16.1 \\ 5.0 & 6.0 & 7.3 & 6.7 & 10.4 \\ 2.2 & 4.2 & 5.8 & 8.9 & 8.6 \\ 2.3 & 3.3 & 2.3 & 3.3 & 2.3 \\ 10.5 & 8.8 & 9.9 & 7.8 & 14.5 \\ 10.4 & 7.7 & 11.7 & 8.8 & 16.7 \\ 0.2 & 0.5 & 0.3 & 0.5 & 2.0 \\ 0.2 & 0.2 & 0.2 & 0.2 & 1.5 \\ \end{bmatrix} $	$ \begin{bmatrix} [0.0, 0.6] & [0.6, 1.2] & [1.82, 2.4] \\ p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} & m_{\rm T} \\ \end{bmatrix} \\ \begin{bmatrix} 10.4 & 10.3 & 10.8 & 10.1 & 16.1 & 17.1 \\ 5.0 & 6.0 & 7.3 & 6.7 & 10.4 & 15.5 \\ 2.2 & 4.2 & 5.8 & 8.9 & 8.6 & 10.6 \\ 2.3 & 3.3 & 2.3 & 3.3 & 2.3 & 3.3 \\ 10.5 & 8.8 & 9.9 & 7.8 & 14.5 & 11.0 \\ 10.4 & 7.7 & 11.7 & 8.8 & 16.7 & 12.1 \\ 0.2 & 0.5 & 0.3 & 0.5 & 2.0 & 2.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 1.5 & 1.5 \\ \end{bmatrix} $	$ \begin{bmatrix} [0.0, 0.6] & [0.6, 1.2] & [1.82, 2.4] & \text{Com} \\ p_{\mathrm{T}}^{\ell} & m_{\mathrm{T}} & p_{\mathrm{T}}^{\ell} & m_{\mathrm{T}} & p_{\mathrm{T}}^{\ell} & m_{\mathrm{T}} & p_{\mathrm{T}}^{\ell} \\ \end{bmatrix} $

W-boson charge	V	V^+	V	V^{-}	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma E_{\rm T}^*$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections ($Z \rightarrow W$ extrapolation)	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

THEORY ERRORS: WHAT CAN WE ASSUME?

Quantity	Current theory error	Leading missing terms	Est. future theory error
$\sin^2 heta_{ ext{eff}}^\ell$	4.5×10^{-5}	$\mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(N_f^{\geq 2} \alpha^3)$	11.5×10^{-5}
R_b	$\sim 2\times 10^{-4}$	$\mathcal{O}(\alpha^2), \mathcal{O}(N_f^{\geq 2}\alpha^3)$	$\sim 1 \times 10^{-4}$
Γ_Z	few MeV	$\mathcal{O}(\alpha^2), \mathcal{O}(N_f^{\geq 2}\alpha^3)$	$< 1 {\rm ~MeV}$
M_W	$4 { m MeV}$	$\mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(N_f^{\geq 2} \alpha^3)$	$\lesssim 1 { m ~MeV}$

Table 1-1. Some of the most important precision observables for Z-boson production and decay and the W mass (first column), their present-day estimated theory error (second column), the dominant missing higher-order corrections (third column), and the estimated improvement when these corrections are available (fourth column). In many cases, the leading parts in a large-mass expansion are already known, in which case the third column refers to the remaining pieces at the given order. The numbers in the last column are rough order-of-magnitude guesses.

EXPERIMENTAL ERRORS: WHAT CAN WE ASSUME?

$\Delta \sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	ATLAS	CMS	LHC/pe	r expe	riment
$\sqrt{s} [\text{TeV}]$	7	7	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000
PDF	70	130	35	25	10
higher order corr.	20	110	20	15	10
other systematics	70	181	60 (35)	20	15
statistical	40	200	20	5	2
Total	108	319	75 (57)	36	21