

Status and opportunities in Higgs and BSM at LHC

M. Bauce, F. Pandolfi

1

Assisi, 16-18 June 2019

From SM to...

 LHC has tested and measured the properties of SM to a very good degree of precision:

satisfying but not exhaustive

 we also like to search for what is still unknown, beyond the SM

how are we looking for new Physics Phenomena?

The last great discovery: the Higgs

Ι		Ι	
		SN	Λ
. 3	Sys	st.	
,	+ 0.0 - 0.0	09 08)	
.,	± 0.	06)	
,	± 0.	15)	
,	+ 0.4	46 38)	
',	+ 0.0	$\frac{57}{56}$	
,	+ 0.2	26 19)	
,	+ 0.2 - 0.2	27)	
,	± 0.	21)	
,	+ 0.2	⁺⁰ 35)	
,	+ 0.3	$\frac{39}{36}$	
,	+0. -0.	$\frac{10}{13}$	
,	-0.2	22)	
,	+0.	11)	
,	- 0.	18) 17.	
,	+0. -0.	16)	
,	- 0. ¹	14)	
,	- 0.3	38) 75 \	
,	- 0.5 - 0.5	, 5 59)	
,	± 0.	52)	
,	- 0. ⁻	18)	
	8		

Is it really the SM Higgs?

Will the future tell us more?

3 ab

known at the few % level

Pair produced Higgs

ongoing, but will be sensitive to SM

Significance [σ]

Always looking for more

We should seek all possible evidence for NP

LHC: the Ideal Machine to Search for Heavy Resonances

8 TeV DiJet Event!

2.2 TeV I+MET Event!

We've Done a Lot of Bump Hunts!

But Bump-Hunts Are Running Out of Steam

- Probing really high masses: O(10 TeV)
- More lumi brings marginal improvements
- Can't just reload searches: need new ideas

examples	Mass Lower limit
String resonance (jj)	~ 8 TeV
Excited quark (jj)	~ 6.5 TeV
Z' (SSM) (II)	~ 5 TeV
W' (SSM) (I∨)	~ 6 TeV

Example: Dijets Going to Lower Mass with ISR and Substructure ΟΛΛΛΛο

- Two high-energy jets q
- No proposito trigger $t_{e}r M > ~ 1.5 TeV$
- Can go down to ~ 0.5 TeV with trigger-level analysis q Ζ'

- (photopyr gluon)

Mass 'heavy enough' for two resolved jets

- Need hard ISR to trigger (photon or gluon)
- Light mass: large boost
- Large jet + substructure

q

q

Dark Matter, anyone?

Dark Matter Searches

Complementary to DD experiments

Mono-X searches in the long run

Weirder signatures

Nature sometimes can be different

Long-Lived Particles and Other Unconventional Signatures

Many extensions of SM predict Long-lived (LL) or unconventional signatures •

- Typically complicated searches
 - No reliable BG modelling in MC
 - Deep understanding of detector needed

Example: Displaced Jets

- Reconstruction of **displaced** vertices
 - in tracker (CMS)
 - in **muon chambers** (ATLAS) •
- Interpreted in various models (XX \rightarrow (jj)(jj), GMSB SUSY, RPV SUSY...)

35.9 fb⁻¹ (13 TeV)

Multitrack vertices in Muon Spectrometer

Displaced multitrack vertices

New Opportunities Thanks to Precision Timing in Phase-2

Long-lived neutral particles

From 4D distance between PV and decay vertex $\rightarrow \beta(\chi^0)$ Full mass measurement from V⁰ **Delayed photons**

Precise timing significantly expands small-t sensitivity

Heavy stable charged particles

Can measure $1/\beta$ from track only

SUSY Has Gotten a Beating from LHC... but it's Still Alive

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2019 Model Mass limit Signature $\int \mathcal{L} dt \, [fb^{-1}]$ 0 e,µ 2-6 jets 1.55 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ E_T^{miss} E_T^{miss} 36.1 mono-jet 1-3 jets 36.1 0.43 [1x, 8x Dege 0.71 0 e,µ E_T^{miss} 2-6 jets 36.1 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 2.0 0.95-1.6 3 e,µ 4 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$ 36.1 $ee, \mu\mu$ 2 jets E_T^{miss} 36.1 1.2 0 e,µ 7-11 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ E_T^{miss} 36.1 3 e,µ 4 jets 36.1 0.98 0-1 e,µ E_T^{miss} **3** b 2.25 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 79.8 3 e,µ 1.25 4 jets 36.1 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ Multiple 36.1 Forbidden 0.9 0.58-0.82 Multiple 36.1 Forbidden Multiple 36.1 Forbidden 0.7 $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 0 e,µ 139 Forbidden 0.23-1.35 6 b 0.23-0.48 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, μ 0-2 jets/1-2 $b E_T^{\text{miss}}$ 36.1 $\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP 0.48-0.84 $m(\tilde{\chi}_1^0) = 150 \text{ GeV}, m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}, \tilde{t}_1 \approx \tilde{t}_L$ Multiple 36.1 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $E_T^{\rm miss}$ $1 \tau + 1 e, \mu, \tau$ 2 jets/1 b 36.1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0.85 2 c 36.1 0 e,µ E_T^{miss} 0.46 0.43 $E_T^{\rm miss}$ 0 e, µ mono-iet 36.1 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ **1-2** e, μ 4 b E_T^{miss} 36.1 0.32-0.88 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ 2-3 e, µ E_T^{miss} 0.6 36.1 E_T^{miss} 36.1 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.17 $ee, \mu\mu$ ≥ 1 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW E_T^{miss} 139 2 e,µ 0.42 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh 0-1 e, µ **2** b E_T^{miss} 36.1 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.68 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$ 2 e,µ E_T^{miss} 139 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} {\rightarrow} \tilde{\tau}_1 \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau}_1 \tau(\nu \tilde{\nu})$ E_T^{miss} 2τ 36.1 0.76 0.22 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=100 \text{ GeV}, m(\tilde{\tau},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$ Y_1^{\pm}/X $E_T^{
m miss}$ $E_T^{
m miss}$ $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 0.7 2 e,µ 0 jets 139 36.1 2 e, µ 0.18 ≥ 1 0 e,µ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ $\geq 3 b$ $E_T^{
m miss}$ $E_T^{
m miss}$ 0.29-0.88 36.1 0.13-0.23 0 jets 36.1 4 e, µ 0.3 Disapp. trk 0.46 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ 1 jet $E_T^{\rm miss}$ 36.1 0.15 Stable g R-hadron Multiple 36.1 2.0 Multiple 36.1 2.05 2.4 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$ $[\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ 1.9 $e\mu$, $e\tau$, $\mu\tau$ 3.2 E_T^{miss} $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 0 jets 36.1 1.33 4 e,µ $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.82 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ [λ''_{112} =2e-4, 2e-5] Multiple 1.05 2.0 36.1 R P $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ Multiple [λ''_{323} =2e-4, 1e-2] 1.05 36.1 0.55 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.61 [qq, bs]0.42 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ 36.1 0.4-1.45 $2 e, \mu$ 2 b 1μ DV 136 1e-10< 1/2010 < 1e-8, 3e-10< 1/2010 < 3e-9] 1.6

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Some Say We're 'Just Starting' with the Interesting Regions

SUSY Production at 13 TeV

Smallest cross section Barely any sensitivity with Run-2

Strong production: gluinos and squarks

Largest cross section Inclusive searches Strong limits from Run-2

EW production of charginos

 $\tilde{\chi}_1^0$

Smaller cross section Dedicated searches ($2L+ME_T$, $3L+ME_T$, L+H(bb)+MET, etc) Less stringent limits from Run-2

Inclusive Searches: Small Improvements from Increase in Statistics

HL-LHC: First Real Sensitivity to Electroweak SUSY

- Most current limits are very weak: reach can be ~doubled with HL-LHC
- Discovery potential for some mass regions (currently ~none)

Is this the end?

- Yes, it's the end of the talk:
 - though we know we missed a lot of nice searches

- No, it's not the end of LHC search program:
 - collecting more data will not do all the work
 - we need to be clever and explore what still we miss/forgot to look for

"you never know what you might need"

BACKUP

Dark Photon Decays Dark Photon Models with Kinetic Mixing

$$\mathscr{L} \subset \frac{1}{2} \frac{\epsilon}{\cos \theta} (\partial^{\mu} A_D^{\nu} - \partial^{\nu} A_D^{\mu}) (\partial^{\mu} B^{\nu} - \partial^{\nu} B^{\mu}) \quad \text{ε: kinetic mined and ε: kinetic mined and$$

LHCb Search for Dark Photons in Dimuon Channel

• Looking for $A' \rightarrow \mu \mu$

- Bump hunt in dimuon spectrum from M $\sim 2m_{\mu}$ to 70 GeV

• Excluding $\varepsilon > 10^{-2}$ -10⁻³ (depending on M)

Look for any kind of DM, in any place

just a very small representative sample

New physics searches overview (ATLAS)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

310	alus. May 2019					$\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$	$\sqrt{s} = 8, 13 \text{ Te}$
	Model	<i>ℓ</i> , γ	Jets†	E_{T}^{miss}	∫£ dt[ft	Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ multi-channe \\ q \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $2 J$ $\geq 1 b, \geq 1 J/$ $\geq 2 b, \geq 3$	Yes - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	MD 7.7 TeV $n = 2$ MS 8.6 TeV $n = 3$ HLZ NLO Mth 8.9 TeV $n = 6$ Mth 8.2 TeV $n = 6$, $M_D = 3$ TeV, rot BH Mth 9.55 TeV $n = 6$, $M_D = 3$ TeV, rot BH GKK mass 2.3 TeV $k/\overline{M}_{PI} = 0.1$ GKK mass 1.6 TeV $k/\overline{M}_{PI} = 1.0$ KK mass 3.8 TeV $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019- 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \tau\tau\\ \mathrm{Leptophobic}\ Z' \to bb\\ \mathrm{Leptophobic}\ Z' \to tt\\ \mathrm{SSM}\ W' \to \ell\nu\\ \mathrm{SSM}\ W' \to \tau\nu\\ \mathrm{HVT}\ V' \to WZ \to qqqq \ \mathrm{model}\\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ \mathrm{B}\\ \mathrm{LRSM}\ W_R \to tb\\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ 1τ el B 0 e, \mu multi-channe 2μ	- 2 b ≥ 1 b, ≥ 1J/ - 2 J 9 9 2 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 80	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-10 1801.06992 ATLAS-CONF-2019- 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ 21.8 TeV $\eta_{LL}^ \Lambda$ 40.0 TeV $\eta_{LL}^ \Lambda$ 2.57 TeV $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
ΜŪ	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	M) 0 e,μ cDM) 0 e,μ 0 e,μ M) 0-1 e,μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 1812.09743
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass1.4 TeV $\beta = 1$ LQ mass1.56 TeV $\beta = 1$ LQ' mass1.03 TeV $\mathcal{B}(LQ''_3 \rightarrow b\tau) = 1$ LQ'_3 mass970 GeV $\mathcal{B}(LQ'_3 \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe X $2(SS)/\geq 3 e,\mu$ $1 e, \mu$ $0 e,\mu, 2 \gamma$ $1 e, \mu$	$\begin{array}{l} x \\ y \\ z \ge 1 \ b, \ge 1 \ j \\ \ge 1 \ b, \ge 1 \\ \ge 1 \ b, \ge 1 \\ \ge 2 \ b, \ge 1 \\ \ge 4 \ j \end{array}$	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass1.37 TeVSU(2) doubletB mass1.34 TeVSU(2) doublet $T_{5/3}$ mass1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3} Wt) = 1$ Y mass1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass1.21 TeV $\kappa_B = 0.5$ Q mass690 GeV	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018- 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.6 TeV $\Lambda = 3.0 \text{ TeV}$ ℓ^* mass 3.0 TeV $\Lambda = 3.0 \text{ TeV}$ ν^* mass 1.6 TeV $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019- 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e, μ 2 μ 2,3,4 e, μ (SS 3 e, μ, τ - - - - - - - - - - - - - - - - - - -	$\geq 2j$ $2j$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	Yes - 3 TeV ata	79.8 36.1 36.1 20.3 36.1 34.4	N° mass560 GeVN _R mass3.2 TeVH** mass870 GeVH** mass870 GeVH** mass1.22 TeVmulti-charged particle mass1.22 TeVmonopole mass2.37 TeV10^{-1}1	ATLAS-CONF-2018- 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
			- Tuli U	att		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

 \dagger Small-radius (large-radius) jets are denoted by the letter j (J).

ļ	S Preliminary
	$\sqrt{s} = 8$, 13 lev Reference
'	1504.05162
	1504.05162
	1808.03057
	1409.5542
	1310.3675
	1712.02118
	1506.05332
	1504.03634
	1808.04095
	1710.04901
	ATLAS-CONF-2018-003
	1902.03094
	1511.05542
	ATLAS-CONF-2016-042
	ATLAS-CONF-2016-042
	1808.03057
	1811.02542
	1806.07355
	1902.03094
	1902.03094
/	1902.03094
	1504.03634
	1504.03634

New physics searches overview (ATLAS)

New physics searches overview (CMS)

Overview of CMS EXO results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

January 2019

CMS long-lived particle searches, lifetime exclusions at 95% CL RPV SUSY, $\tilde{t} \rightarrow bl, m(\tilde{t}) = 420 \text{ GeV}$ 8 TeV, 19.7 fb⁻¹ (displaced leptons) H → XX (10%), X → ee, m(H) = 125 GeV, m(X) = 20 GeV 8 TeV, 19.6 fb⁻¹ (displaced leptons) H → XX (10%), X → μμ, m(H) = 125 GeV, m(X) = 20 GeV 8 TeV, 20.5 fb⁻¹ (displaced leptons) GMSB SPS8, $\widetilde{\chi}^0_{\tau} \rightarrow \widetilde{G}\gamma$, m($\widetilde{\chi}^0_{\tau}$) = 250 GeV 8 TeV, 19.7 fb⁻¹ (disp. photon conv.) GMSB SPS8, $\tilde{\chi}_{1}^{0} \rightarrow \tilde{G} \gamma$, m($\tilde{\chi}_{2}^{0}$) = 250 GeV 8 TeV, 19.1 fb⁻¹ (disp. photon timing) RPV SUSY, m(\tilde{q}) = 1000 GeV, m($\tilde{\chi}_{.}^{0}$) = 150 GeV 8 TeV, 18.5 fb⁻¹ (displaced dijets) RPV SUSY, m(\tilde{q}) = 1000 GeV, m($\tilde{\chi}_{,}^{0}$) = 500 GeV 8 TeV, 18.5 fb⁻¹ (displaced dijets) AMSB $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{1}^{\pm} \rightarrow \widetilde{\chi}_{1}^{0} + \pi^{\pm}, m(\widetilde{\chi}_{1}^{\pm}) = 200 \text{ GeV}$ 8 TeV, 19.5 fb⁻¹ (disappearing tracks) cloud model R-hadron, m(g) = 1000 GeV 8 TeV, 18.6 fb⁻¹ (stopped particle) AMSB $\tilde{\chi}_{1}^{\pm}$, tan(β) = 5, μ > 0, m($\tilde{\chi}_{2}^{\pm}$) = 800 GeV 8 TeV, 18.8 fb⁻¹ (tracker + TOF) AMSB $\tilde{\chi}^{\pm}$, tan(β) = 5, μ > 0, m($\tilde{\chi}^{\pm}$) = 200 GeV 8 TeV, 18.8 fb⁻¹ (tracker + TOF) 10⁻⁴ 10⁻² 10^{2} 10⁴ 10° 10°

New physics searches overview (CMS)

