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Overview and Motivations



Black holes and holography

Main goal:

study black hole microstates using string theory and holography

In some cases, a black hole is dual to an ensemble in a 2D CFT

(with large c)

Black hole
holography
←−−−−−−−→ CFT

A b.h. microstate is dual to a “heavy” operator (∆H ∼ c)

and (in some limit) is described by a 10D classical geometry

ds2
H ←→ OH

Microstates can be probed by “light” operators (∆L ∼ O(c0))

〈OL(z)ŌL(1)〉ds2
H
←→ 〈ŌH(∞)OH(0)OL(z)ŌL(1)〉

HHLL correlators can diagnose information loss vs. unitarity
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Holographic correlators

Holographic correlators of single-trace operators (like OL) are usually

computed by summing Witten diagrams

This technique has not been extend to correlators with multi-trace

operators (like OH)

Even for single-trace correlators, Witten diagrams in AdS3 are

subtle: no holographic correlator in a 2D CFT has ever been

computed before

Our approach bypasses Witten diagrams:

OH

_
OH

OL OL

_

+

OH

_
OH

OL OL

_

+ . . . →

OL OL

_

X
ds2H

In a certain limit: 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉
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Correlators and information loss



A version of the information paradox (Maldacena ’01)

A black hole with temperature TH is dual to a thermal ensemble

ds2
BH ←→ ρβ =

∑
H

e−βEH |H〉〈H| with β = T−1
H

The 2-point function of operators of dimension ∆ in a black hole

background vanishes at large t

〈O(t)O(0)〉b.h. ∼ e−4π∆TH t

This follows from the fact that solutions of the wave equation in the

black hole background have complex frequencies (quasi-normal

modes)

This is not what one expects for the correlator in the thermal state

in a unitary theory with finite entropy
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Correlators in unitary theories (Dyson, Lindesay, Susskind; Barbon, Rabinovici)

In a unitary theory with finite entropy and hence a discrete spectrum

Cβ(t) ≡ 〈O(t)O(0)〉β = Z−1
β Tr

[
e−βHO(t)O(0)

]
= Z−1

β

∑
ij

e−βEi |〈i |O(0)|j〉|2e i(Ei−Ej )t

The long-time average of the correlator is

lim
T→∞

1

T

∫ T

0

dt |Cβ(t)|2 ∼ Z2β

Z 2
β

∼ e−S

Hence Cβ(t) cannot be exponentially vanishing at late times
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Qualitative behaviour of Cβ(t)

Cβ(t) = Z−1
β

∑
ij

e−βEi |〈i |O(0)|j〉|2e i(Ei−Ej )t

For t � 〈Ei − Ej〉−1 the spectrum can be

approximated as continuous and Cβ ∼ e−t/β

For t ∼ βS the correlator is of the order of its

long-time average e−S : it oscillates irregularly

and no longer decreases

For t ∼ βee
S

most of the phases are again of

order 1 and hence Cβ ∼ O(1)
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The D1-D5 system



A microscopic BH model: D1-D5-P (Strominger, Vafa)

The simplest BPS black hole with a finite-area horizon is

D1-D5-P on R4,1 × S1 × T 4

We take vol(T 4) ∼ `4
s and R(S1)� `s ⇒ 2D CFT

The b.h. has a “near-horizon” limit ⇒ AdS3 × S3 × T 4

We take GN → 0 with RAdS fixed ⇒ c = 6n1n5 ≡ 6N →∞
The CFT has a 20-dim moduli space:

gsN → 0 : free orbifold point ←→ RAdS � `s

gsN � 1 : strong coupling point ←→ RAdS � `s

Goal: understand b.h. microstates at the strong coupling point
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The D1-D5 CFT

Symmetries:

(4,4) SUSY with SU(2)L × SU(2)R R-symmetry ←→ S3 rotations

The orbifold point: sigma-model on (T 4)N/SN
The elementary fields are 4 bosons, 4 fermions and twist fields

Chiral primary operators: O(j,j̄) with h = j , h̄ = j̄ (and their

descendants with respect to L−n, J−−n, G−−n−1/2) are protected

Spectral flow:

NS−→ R

j −→ j + N
2

, h −→ h + j + N
4

(anti)CPO−→ RR ground states with h = h̄ = N
4
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2-charge microstates

States carrying D1-D5 charges are RR ground states (h = h̄ = N
4 )

Note: h, h̄ ∼ c ⇒ “heavy” states ⇒ classical geometry

A simple example:

|0〉NS

←−
−−

AdS3 × S3

spectral flow
−−−−−−−−−−→

←−
−−

φ→ φ− τ , ψ → ψ − σ

|N/2,N/2〉R

←−
−−

AdS3 ×′ S3

with (φ, ψ) S3 coordinates and (τ, σ) AdS3 coordinates

The geometry dual to the maximally rotating RR ground state

|N/2,N/2〉R is AdS3 ×′ S3 with S3 non-trivially fibered over AdS3

9



More generic 2-charge states (Lunin, Mathur)

Given a CPO Ok of dimension k one can form the “coherent state”

|Ok〉NS ≡
∑
p

BpOp
k |0〉NS

In the large N limit the p-sum is peaked for p ≈ B2/k

What is the gravitational description of |Ok〉NS?

Holography associates to Ok a sugra field φk : Ok ←→ φk

At linear order in B |Ok〉NS is a small perturbation of the vacuum

|0〉NS + B Ok |0〉NS ←→ AdS3 × S3 + B φk

where φk =

(
1√
ρ2+1

)k

sink θ e ik(φ+τ) solves the linearised sugra eqs.

around AdS3 × S3
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One can extend the linearised solution to an exact solution of the

sugra eqs. valid for B2 ∼ N

The solution is smooth and horizonless

The solution is asymptotically AdS3 × S3 but in the interior AdS3

and S3 are non-trivially mixed

The R-sector solution can be extended to an asymptotically flat

geometry

R4,1 × S1

AdS3 × S3

←− r ∼ RHor no horizon!
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A small black hole

The statistical ensemble of BPS D1-D5 states (with P = 0) is

described by the “massless BTZ” geometry

ds2

R2
AdS

=
dρ2

ρ2
+ ρ2(−dτ 2 + dσ2) + dΩ2

3

It is a singular geometry with AHor = 0

Correlators in this geometry still display information loss

〈O(τ)Ō(0)〉BTZ0 ∼ τ−∆
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Holographic correlators



HHLL correlators

We want to compute

CH(z , z̄) ≡ 〈ŌH(∞)OH(0)OL(z , z̄)ŌL(1)〉

with

OH
spectral flow
−−−−−−−−−−−→

∑
p B

pOp
k

holography
←−−−−−−−→ ds2

H

OL = Ok′
holography
←−−−−−−−→ φk′

We will take k = k ′ = 1 in the following
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How to compute correlators in holography

OL(z , z̄) ←→ φ(ρ; z , z̄)

Solve the linearised e.o.m. for φ in the background ds2
H ←→ OH

Pick the non-normalisable solution such that

at the boundary (ρ→∞)

vev of OL(z , z̄)
↗

φ(ρ; z , z̄)
ρ→∞−→ δ(z − 1) ρ∆−d + b(z , z̄) ρ−∆

↘
source for ŌL(1)

in the interior (ρ→ 0) φ(ρ; z , z̄) is regular

The correlator is given by

CH(z , z̄) = 〈OH |OL(z , z̄)ŌL(1)|OH〉 = b(z , z̄)
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A technical remark

The e.o.m. for φ ←→ OL is complicated

It is simpler to compute

C̃H(z , z̄) ≡ 〈ŌH(∞)OH(0)ÕL(z , z̄)ÕL(1)〉

with

ÕL ≡ GḠOL
holography
←−−−−−−−→ φ̃ minimally coupled scalar in 6D

Since GOH = 0, CH and C̃H are related by the Ward identity

C̃H(z , z̄) = ∂∂̄ [|z | CH(z , z̄)]

The WI is a non-trivial check on the gravity computation when both

CH and C̃H can be computed
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Results



The exact HHLL correlator

Gravity

CH = α e−iτ
∑
l∈Z

e ilσ
∞∑
n=1

exp

[
−iα

√
(|l |+ 2n)2 + (1−α2)l2

α2 τ

]
√

1 + 1−α2

α2
l2

(|l|+2n)2

+N(1−α2)e−iτ

with z = e i(τ+σ), z̄ = e i(τ−σ), α =
(

1− B2

N

)1/2

Free CFT

CH =
1

|z ||1− z |2
+

B2

2N

|z |2 + |1− z |2 − 1

|z ||1− z |2
+

(N − B2)B2

N

(
1− 1

N

)
1

|z |
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The OPE interpretation

The 4-point function can be reconstructed from the z → 1 OPE

OH

_
OH

OL

OL

_

OL(z)ŌL(1) ∼ |1−z |−2(1+(1−z)J+(1−z)2T+. . .)

+
∑
n,`

(1− z)n+`(1− z̄)n:OL∂
n+`∂̄nŌL :

+ non-BPS single-trace operators

The first line gives the affine identity block, which dominates in the

light-cone limit (z̄ → 1)

In the second line are non-BPS double-trace operators with

h = 1 + n + `+
γn`
N

, h̄ = 1 + n +
γn`
N

The operators in the third line are dual to string modes and have

h, h̄→∞ in the sugra limit
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The late-time behaviour



The late time behaviour of the HHLL correlator

The geometry of OH depends on the parameter B

B2 → 0: the geometry is a small perturbation of AdS3 × S3

B2 → N (or α→ 0): the geometry approximates the “small b.h.”

We focus on the α→ 0 limit

In this limit the series giving CH is dominated by terms with n� |l|
2α :

CH ∼ e−iτ
[

1

1− e i(σ−τ)
+

1

1− e−i(σ+τ)
− 1

]
α

1− e−2iα τ

The time-dependence of the correlator is controlled by α:

for τ � α−1 one recovers the BTZ behaviour CH ∼ τ−1

for τ & α−1 CH stops decreasing with τ and oscillates

The late-time behaviour of the correlator is consistent with unitarity
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LLLL limit



The small B limit

When B2 � N OH , spectrally flowed to the NS sector, is light

OH
spectral flow
−−−−−−−−−−−→

∑
p

BpOp −→ O ≡ OL for B2 = 1

Naively one expects 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉 for B2 = 1

This is not correct! There is an order of limit problem:

HHLL: take N →∞ with B2/N fixed and then B2/N → 0

LLLL: take B2 = 1 first and then N →∞

But it works for z → 1, more precisely

the B2 → 0 limit of the HHLL correlator correctly captures

all the single-trace operators exchanged between OL and ŌL
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Reconstructing the LLLL correlator

One can uniquely reconstruct CL ≡ 〈ŌL(z1)OL(z2)OL(z3)ŌL(z4)〉 from

for z1 → z2, CL = limB2→1 CH
CL is symmetric under z2 ↔ z3 exchange

CL is consistent with the flat space limit (RAdS →∞)

the operator with the lowest dimension exchanged for z2 → z3 is

protected

One finds

CL =

(
1− 1

N

)
(1 + |1− z |−2) +

2

πN
|z |2(D̂1122 + D̂1212 + D̂2112)

where D̂i1i2i3i4 is the Witten contact digram with operators of dimension

i1, . . . , i4

(The generalisation to generic CPOs is under construction)
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Summary and outlook



Summary

Black hole mircostates can be identified with “heavy” states of a

dual CFT

At strong coupling heavy states are described by smooth horizonless

geometries

HHLL correlators can be extracted from these geometries and can

be used to probe unitarity

If probed for a short time microstates are indistinguishable from the

black hole

For sufficiently long times microstates deviate from the black hole

and produce correlators that are consistent with unitarity already at

large c
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Outlook

Classical supergravity works well for atypical states in the black hole

ensemble

Deviations from a typical state and the classical black hole should be

exponentially suppressed in the entropy

How much of our analysis can be extended to typical states?

And what about microstates of black holes with non-degenerate

horizons (3-charge, non-BPS)?

It is possible that classical supergravity probes cannot resolve the

structure of typical states

Does one need to resort to full string theory?
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