

Holographic Correlators and the Information Paradox

Stefano Giusto

April 10 2019

Università di Genova

References

Based on 1606.01119, 1705.09250, 1710.06820, 1812.06479

with A. Bombini, A. Galliani, E. Moscato, R. Russo, C. Wen

Overview and Motivations

Black holes and holography

Main goal:

study black hole microstates using string theory and holography

 In some cases, a black hole is dual to an ensemble in a 2D CFT (with large c)

Black hole
$$\stackrel{\text{holography}}{\longleftrightarrow}$$
 CFT

ullet A b.h. microstate is dual to a "heavy" operator ($\Delta_H \sim c$) and (in some limit) is described by a 10D classical geometry

$$ds_H^2 \longleftrightarrow O_H$$

ullet Microstates can be probed by "light" operators $(\Delta_L \sim {\it O}(c^0))$

$$\langle \mathcal{O}_L(z)\bar{\mathcal{O}}_L(1)\rangle_{ds_H^2}\longleftrightarrow \langle \bar{\mathcal{O}}_H(\infty)\mathcal{O}_H(0)\mathcal{O}_L(z)\bar{\mathcal{O}}_L(1)\rangle$$

HHLL correlators can diagnose information loss vs. unitarity

Holographic correlators

- Holographic correlators of single-trace operators (like O_L) are usually computed by summing Witten diagrams
- This technique has not been extend to correlators with multi-trace operators (like O_H)
- Even for single-trace correlators, Witten diagrams in AdS₃ are subtle: no holographic correlator in a 2D CFT has ever been computed before
- Our approach bypasses Witten diagrams:

ullet In a certain limit: $\langle ar{O}_H O_H O_L ar{O}_L
angle
ightarrow \langle ar{O}_L O_L O_L ar{O}_L
angle$

3

Correlators and information loss

 \bullet A black hole with temperature T_H is dual to a thermal ensemble

$$ds_{BH}^2 \longleftrightarrow \rho_{\beta} = \sum_{H} e^{-\beta E_H} |H\rangle\langle H| \text{ with } \beta = T_H^{-1}$$

ullet The 2-point function of operators of dimension Δ in a black hole background vanishes at large t

$$\langle O(t) \, \overline{O}(0) \rangle_{\mathrm{b.h.}} \sim e^{-4\pi \Delta T_H \, t}$$

- This follows from the fact that solutions of the wave equation in the black hole background have complex frequencies (quasi-normal modes)
- This is not what one expects for the correlator in the thermal state in a unitary theory with finite entropy

• In a unitary theory with finite entropy and hence a discrete spectrum

$$\begin{split} \mathcal{C}_{\beta}(t) &\equiv \langle O(t) \, \overline{O}(0) \rangle_{\beta} = Z_{\beta}^{-1} \mathrm{Tr} \, \left[e^{-\beta H} O(t) \, \overline{O}(0) \right] \\ &= Z_{\beta}^{-1} \sum_{ij} e^{-\beta E_{i}} |\langle i| O(0) |j\rangle|^{2} e^{i(E_{i} - E_{j})t} \end{split}$$

• The long-time average of the correlator is

$$\lim_{T o\infty}rac{1}{T}\int_0^T dt\, |\mathcal{C}_eta(t)|^2\sim rac{Z_{2eta}}{Z_eta^2}\sim \mathrm{e}^{-S}$$

ullet Hence $\mathcal{C}_{eta}(t)$ cannot be exponentially vanishing at late times

Qualitative behaviour of $\mathcal{C}_{eta}(t)$

$$\mathcal{C}_{eta}(t) = Z_{eta}^{-1} \sum_{ii} \mathrm{e}^{-eta E_i} |\langle i| O(0) |j
angle|^2 \mathrm{e}^{i(E_i - E_j)t}$$

- For $t \ll \langle E_i E_j \rangle^{-1}$ the spectrum can be approximated as continuous and $\mathcal{C}_\beta \sim \mathrm{e}^{-t/\beta}$
- For $t \sim \beta S$ the correlator is of the order of its long-time average e^{-S} : it oscillates irregularly and no longer decreases
- ullet For $t\sim eta e^{{f e}^{{f e}^{{f S}}}}$ most of the phases are again of order 1 and hence $\mathcal{C}_eta\sim \mathcal{O}(1)$

The D1-D5 system

• The simplest BPS black hole with a finite-area horizon is

D1-D5-P on
$$\mathbb{R}^{4,1} imes S^1 imes T^4$$

- We take $\operatorname{vol}(T^4) \sim \ell_s^4$ and $R(S^1) \gg \ell_s \Rightarrow \mathsf{2D} \; \mathsf{CFT}$
- The b.h. has a "near-horizon" limit $\Rightarrow AdS_3 \times S^3 \times T^4$
- We take $G_N \to 0$ with R_{AdS} fixed $\Rightarrow c = 6n_1n_5 \equiv 6N \to \infty$
- The CFT has a 20-dim moduli space:
 - $g_s N \to 0$: free orbifold point $\longleftrightarrow R_{AdS} \ll \ell_s$
 - $g_s N \gg 1$: strong coupling point $\longleftrightarrow R_{AdS} \gg \ell_s$

Goal: understand b.h. microstates at the strong coupling point

The D1-D5 CFT

- Symmetries:
 - (4,4) SUSY with $SU(2)_L \times SU(2)_R$ R-symmetry $\longleftrightarrow S^3$ rotations
- The orbifold point: sigma-model on $(T^4)^N/S_N$ The elementary fields are 4 bosons, 4 fermions and twist fields
- Chiral primary operators: $O_{(j,\bar{j})}$ with $h=j,\ \bar{h}=\bar{j}$ (and their descendants with respect to $L_{-n},\ J_{-n}^-,\ G_{-n-1/2}^-$) are protected
- Spectral flow:
 - \bullet NS \longrightarrow R
 - \bullet $j \longrightarrow j + \frac{N}{2}$, $h \longrightarrow h + j + \frac{N}{4}$
 - (anti)CPO \longrightarrow RR ground states with $h=\bar{h}=\frac{N}{4}$

2-charge microstates

- States carrying D1-D5 charges are RR ground states $(h = \bar{h} = \frac{N}{4})$ Note: $h, \bar{h} \sim c \Rightarrow$ "heavy" states \Rightarrow classical geometry
- A simple example:

with (ϕ,ψ) S^3 coordinates and (τ,σ) AdS $_3$ coordinates

• The geometry dual to the maximally rotating RR ground state $|N/2, N/2\rangle_R$ is $AdS_3 \times' S^3$ with S^3 non-trivially fibered over AdS_3

9

• Given a CPO O_k of dimension k one can form the "coherent state"

$$|O_k\rangle_{\rm NS} \equiv \sum_p B^p O_k^p \, |0\rangle_{\rm NS}$$

- ullet In the large N limit the p-sum is peaked for $ppprox B^2/k$
- What is the gravitational description of $|O_k\rangle_{\rm NS}$?
- ullet Holography associates to O_k a sugra field $\phi_k: O_k \longleftrightarrow \phi_k$
- ullet At linear order in $B\mid O_k
 angle_{
 m NS}$ is a small perturbation of the vacuum

$$|0\rangle_{\rm NS} + B O_k |0\rangle_{\rm NS} \longleftrightarrow {\rm AdS}_3 \times S^3 + B \phi_k$$

where $\phi_k=\left(\frac{1}{\sqrt{\rho^2+1}}\right)^k\sin^k\theta\,e^{ik(\phi+\tau)}$ solves the linearised sugra eqs. around ${\rm AdS}_3\times S^3$

- One can extend the linearised solution to an exact solution of the sugra eqs. valid for $B^2 \sim N$
- The solution is smooth and horizonless
- The solution is asymptotically $AdS_3 \times S^3$ but in the interior AdS_3 and S^3 are non-trivially mixed
- The R-sector solution can be extended to an <u>asymptotically flat</u> geometry

A small black hole

ullet The statistical ensemble of BPS D1-D5 states (with P=0) is described by the "massless BTZ" geometry

$$rac{ds^2}{R_{
m AdS}^2} = rac{d
ho^2}{
ho^2} +
ho^2ig(-d au^2 + d\sigma^2ig) + d\Omega_3^2$$

- It is a singular geometry with $A_{Hor} = 0$
- Correlators in this geometry still display <u>information loss</u>

$$\langle O(\tau)\bar{O}(0)\rangle_{\mathrm{BTZ}_0}\sim \tau^{-\Delta}$$

Holographic correlators

HHLL correlators

We want to compute

$$C_H(z,\bar{z}) \equiv \langle \bar{O}_H(\infty) O_H(0) O_L(z,\bar{z}) \bar{O}_L(1) \rangle$$

with

$$\bullet \ \ O_H \xrightarrow{\text{spectral flow}} \ \sum_p B^p O_k^p \xleftarrow{\text{holography}} \ ds_H^2$$

$$\bullet \ \ O_L = O_{k'} \qquad \qquad \stackrel{\text{holography}}{\longleftarrow} \ \phi_{k'}$$

We will take k = k' = 1 in the following

How to compute correlators in holography

- $O_L(z,\bar{z}) \longleftrightarrow \phi(\rho;z,\bar{z})$
- Solve the linearised e.o.m. for ϕ in the background $ds_H^2 \longleftrightarrow O_H$
- Pick the non-normalisable solution such that
 - at the boundary $(\rho \to \infty)$

$$\phi(\rho;z,\bar{z}) \stackrel{\rho \to \infty}{\longrightarrow} \delta(z-1) \rho^{\Delta-d} + \frac{b(z,\bar{z})}{b(z,\bar{z})} \rho^{-\Delta}$$
source for $\bar{O}_L(1)$

- in the interior $(\rho \to 0) \ \phi(\rho; z, \bar{z})$ is regular
- The correlator is given by

$$C_H(z,\bar{z}) = \langle O_H|O_L(z,\bar{z})\bar{O}_L(1)|O_H\rangle = b(z,\bar{z})$$

A technical remark

- ullet The e.o.m. for $\phi\longleftrightarrow O_L$ is complicated
- It is simpler to compute

$$\widetilde{\mathcal{C}}_H(z,\overline{z}) \equiv \langle \overline{O}_H(\infty) O_H(0) \widetilde{O}_L(z,\overline{z}) \overline{\widetilde{O}}_L(1) \rangle$$

with

$$\widetilde{O}_L \equiv \, G \, \overline{G} \, O_L \, \stackrel{\rm holography}{\longleftrightarrow} \, \, \widetilde{\phi} \, \, \, \underline{\rm minimally \, coupled \, scalar \, in \, 6D}$$

ullet Since $GO_H=0$, \mathcal{C}_H and $\widetilde{\mathcal{C}}_H$ are related by the Ward identity

$$\widetilde{\mathcal{C}}_{H}(z,\bar{z}) = \partial \bar{\partial} \left[|z| \, \mathcal{C}_{H}(z,\bar{z}) \right]$$

• The WI is a non-trivial check on the gravity computation when both \mathcal{C}_H and $\widetilde{\mathcal{C}}_H$ can be computed

Results

The exact HHLL correlator

Gravity

$$C_{H} = \alpha e^{-i\tau} \sum_{l \in \mathbb{Z}} e^{il\sigma} \sum_{n=1}^{\infty} \frac{\exp\left[-i\alpha\sqrt{(|l| + 2n)^{2} + \frac{(1-\alpha^{2})l^{2}}{\alpha^{2}}\tau}\right]}{\sqrt{1 + \frac{1-\alpha^{2}}{\alpha^{2}} \frac{l^{2}}{(|l| + 2n)^{2}}}} + N(1-\alpha^{2})e^{-i\tau}$$

with
$$z = e^{i(\tau + \sigma)}$$
, $\bar{z} = e^{i(\tau - \sigma)}$, $\alpha = \left(1 - \frac{B^2}{N}\right)^{1/2}$

Free CFT

$$C_{H} = \frac{1}{|z||1-z|^{2}} + \frac{B^{2}}{2N} \frac{|z|^{2} + |1-z|^{2} - 1}{|z||1-z|^{2}} + \frac{(N-B^{2})B^{2}}{N} \left(1 - \frac{1}{N}\right) \frac{1}{|z|}$$

The OPE interpretation

ullet The 4-point function can be reconstructed from the z
ightarrow 1 OPE

- ullet The first line gives the affine identity block, which dominates in the light-cone limit (ar z o 1)
- In the second line are non-BPS double-trace operators with

$$h=1+n+\ell+rac{\gamma_{n\ell}}{N}$$
 , $ar{h}=1+n+rac{\gamma_{n\ell}}{N}$

 \bullet The operators in the third line are dual to string modes and have $h,\bar{h}\to\infty$ in the sugra limit

The late-time behaviour

The late time behaviour of the HHLL correlator

- \bullet The geometry of O_H depends on the parameter B
 - $B^2 \to 0$: the geometry is a small perturbation of $AdS_3 \times S^3$
 - ullet $B^2 o N$ (or lpha o 0): the geometry approximates the "small b.h."
- We focus on the $\alpha \to 0$ limit
- In this limit the series giving C_H is dominated by terms with $n \gg \frac{|I|}{2\alpha}$:

$$\mathcal{C}_{H} \sim e^{-i au} \left[rac{1}{1-e^{i(\sigma- au)}} + rac{1}{1-e^{-i(\sigma+ au)}} - 1
ight] rac{lpha}{1-e^{-2ilpha\, au}}$$

- The time-dependence of the correlator is controlled by α :
 - for $\tau \ll \alpha^{-1}$ one recovers the BTZ behaviour $\mathcal{C}_H \sim \tau^{-1}$
 - for $\tau \gtrsim \alpha^{-1}$ C_H stops decreasing with τ and oscillates

The late-time behaviour of the correlator is consistent with unitarity

LLLL limit

The small B limit

• When $B^2 \ll N \ O_H$, spectrally flowed to the NS sector, is light

$$O_H \xrightarrow{\text{spectral flow}} \sum_p B^p O^p \longrightarrow O \equiv O_L \text{ for } B^2 = 1$$

- Naively one expects $\langle \bar{O}_H O_H O_L \bar{O}_L \rangle \to \langle \bar{O}_L O_L O_L \bar{O}_L \rangle$ for $B^2=1$
- This is not correct! There is an order of limit problem:
 - ullet HHLL: take $N o \infty$ with B^2/N fixed and then $B^2/N o 0$
 - ullet LLLL: take $B^2=1$ first and then $N o\infty$
- But it works for $z \to 1$, more precisely

the $B^2 \to 0$ limit of the HHLL correlator correctly captures all the single-trace operators exchanged between O_L and \bar{O}_L

Reconstructing the LLLL correlator

One can uniquely reconstruct $C_L \equiv \langle \bar{O}_L(z_1) O_L(z_2) O_L(z_3) \bar{O}_L(z_4) \rangle$ from

- ullet for $z_1
 ightarrow z_2$, $\mathcal{C}_L = \lim_{B^2
 ightarrow 1} \mathcal{C}_H$
- ullet \mathcal{C}_L is symmetric under $z_2 \leftrightarrow z_3$ exchange
- ullet \mathcal{C}_L is consistent with the flat space limit $(R_{\mathrm{AdS}}
 ightarrow \infty)$
- ullet the operator with the lowest dimension exchanged for $z_2
 ightarrow z_3$ is protected

One finds

$$C_L = \left(1 - \frac{1}{N}\right) \left(1 + |1 - z|^{-2}\right) + \frac{2}{\pi N} |z|^2 (\hat{D}_{1122} + \hat{D}_{1212} + \hat{D}_{2112})$$

where $\hat{D}_{i_1i_2i_3i_4}$ is the Witten contact digram with operators of dimension i_1,\ldots,i_4

(The generalisation to generic CPOs is under construction)

Summary and outlook

Summary

- Black hole mircostates can be identified with "heavy" states of a dual CFT
- At strong coupling heavy states are described by smooth horizonless geometries
- HHLL correlators can be extracted from these geometries and can be used to probe unitarity
- If probed for a short time microstates are indistinguishable from the black hole
- \bullet For sufficiently long times microstates deviate from the black hole and produce correlators that are consistent with unitarity already at large c

Outlook

- Classical supergravity works well for atypical states in the black hole ensemble
- Deviations from a typical state and the classical black hole should be exponentially suppressed in the entropy
- How much of our analysis can be extended to typical states?
- And what about microstates of black holes with non-degenerate horizons (3-charge, non-BPS)?
- It is possible that classical supergravity probes cannot resolve the structure of typical states
- Does one need to resort to full string theory?