#### COSINUS

# COSINUS

#### Karoline Schäffner



SC meeting, LNGS, 1st April 2019

@Maurizio Verdecchia Photography



# DARK MATTER

The evidence for dark matter is **overwhelming** and present on all length scales.

Our **cosmological observations** only make sense if the largest fraction of matter is **non-baryonic**.

+ add (≥1) extra and new ingredient (=Dark Matter)
→ new physics beyond SM
→ explains huge interest in community

+ add general relativity



### DAMA/LIBRA: TIME DISTRIBUTION



Statistical significance: >11.9  $\sigma$ 

combined with DAMA/Nal: 2.46 tonne years and 12.9 or !!!!

positive evidence for the presence of DM particles in the galactic halo





# WHAT ARE THE UNKNOWNS?



Astro physics dark matter halo velocity distribution

#### Particle physics

interaction mechanism

We have a dependence on the target material

→ cross-check DAMA/LIBRA signal with **same-target experiment** 

### Nal EXPERIMENTS incomplete list!

#### DM-Ice17 ANAIS-112 COSINE-100

**South pole** 17 kg Nal

energy:  $4 \text{ keV}_{ee}$ 

3.5 y physics run no hint



#### LSC - Spain

112.5 kg Nal

energy: <1 keV<sub>ee</sub>

spring 2017



energy: ~ 2 keV\_{ee}

since Sept. 2016



#### SABRE

Gran Sasso/Australia 40-50 kg Nal

construction phase PoP in 2019



#### KamLand-PICO-lon

KamLand/Japan 1† Nal

planning/ prototyping phase

> KamLAND DAMA/LIBRAは250kg Nal 1トン位 徳島と組め



### DAMA/LIBRA and STANDARD SCENARIO



Most of experiments in exclude standard SI WIMP interaction with standard halo model

COSINE-100 excludes DAMA/LIBRA signal as standard SI WIMP interaction with standard halo model and using **Nal(TI) crystals** 

# **RECENT Nal-based MODULATION RESULTS**



# Why we need COSINUS?

#### www.cosinus.it

- **IDEA**: Nal-based scintillating calorimeter operated at **mK-temperatures**
- PRINCIPLE: Two channel approach: Nal crystal scintillates
   → simultaneous detection of the HEAT and the LIGHT signal



- first Nal detector with particle discrimination
- lower energy threshold for nuclear recoils

 $\rightarrow$  low background

- $\rightarrow$  high sensitivity
- moderate exposure of few O(100) kg-days will be sufficient to confirm or rule-out a nuclear recoil origin of the DAMA/LIBRA dark matter claim

# COSINUS DETECTOR DESIGN



#### Nal Target Crystal

- scintillator
- multi-element target
- mass: ~ 30 200 g
- hygroscopic



#### **Carrier Crystal**

- carries the thermometer (Transition Edge Sensor)
- glue/oil as interface and link for phonons

# COSINUS DETECTOR DESIGN



#### Light absorber

- beaker-shaped HP silicon
- 40 mm diameter & height
- equipped with TES optimized for light detection
- $\rightarrow$  high light collection efficiency
- → fully active veto to reject surface backgrounds
  - (e.g. alpha-induced nuclear recoils)

### PERFORMANCE GOAL



Eur. Phys. J. C (2016) 76:441

01.04.2019

K. Schäffner - SC meeting

# DETECTOR STATUS



1<sup>st</sup> measurement of a Nal as cryogenic calorimeter

linear relation between light output and deposited energy

Nal threshold: 10 keV

3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017)

successful test of complete COSINUS detector design

light energy resolution at zero energy: 15 eV

Nal threshold: 8.3 keV

#### 13 % detected in light

Schäffner, K. et al. J Low Temp Phys (2018). https://doi.org/10.1007/s10909-018-1967-3

### 2<sup>nd</sup> PROTOTYPE DETECTOR



- interface: epoxy resin
- beaker-shaped Si
  - light absorber
- Nal crystal: 66 g



### 2<sup>nd</sup> PROTOTYPE DETECTOR



- Nal energy threshold is (8.26 ± 0.02 (stat.))keV
- width of the <sup>241</sup>Am peak is (4.508 ± 0.064 (stat.)) keV
- carrier events identified by pulse shape

Schäffner, K. et al. J Low Temp Phys (2018). https://doi.org/10.1007/s10909-018-1967-3

# DETECTOR STATUS



as cryogenic calorimeter

linear relation between light output and deposited energy

Nal threshold: 10 keV

3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017)



energy: 15 eV

13 % detected in light

Schäffner, K. et al. J Low Temp Phys (2018).

https://doi.org/10.1007/s10909-018-1967-3

2<sup>nd</sup> PROTOTYPE (2016/17)

🗲 Si beaker LD

epoxy resin

. Nal

changed interface to thin layer of silicon oil

commissioning of: light energy resolution at zero in-house electronics and DAQ from MIB Nal threshold: 6.5 keV Nal threshold: 8.3 keV

AmBe calibration campaign

#### 4<sup>th</sup>→ **12<sup>th</sup>** PROTOTYPE (2018/19)



SICCAS Nal/Nal(Tl) 🗕 new TES

validate new batch of Nal/**Nal(Tl)** crystals from SICCAS

2. test of new **TES-concept** for the Nal crystal

K. Schäffner - SC meeting

### CYRSTAL PROGRAM



- collaboration with **I. Dafinei** from INFN, Roma 1 in Italy
- Yong Zhu from SICCAS joined the COSINUS collaboration
- Nal / Nal(TI) grown from **Astrograde-powder** at SICCAS:



#### $\rightarrow$ very promising radiopurity:

5-9 ppb of K at crystals' nose and 22-35 ppb at crystals' tail (3-inch crystal @ SICCAS)



# CYRSTAL PROGRAM



- collaboration with **I. Dafinei** from INFN, Roma 1 in Italy
- Yong Zhu from SICCAS joined the COSINUS collaboration
- Nal / Nal(TI) grown from **Astrograde-powder** at SICCAS:



#### $\rightarrow$ very promising radiopurity:

5-9 ppb of K at crystals' nose and 22-35 ppb at crystals' tail (3-inch crystal @ SICCAS)



#### IN THE QUEUE:

- Nal(TI) grown with internal samarium "contamination" to study alpha quenching factor
- Nal(TI) with different amount of thallium dopant to study nuclear quenching factors



## TO DO LIST FOR DARK MATTER MODULE

operate Nal as cryogenic detector
beaker-shaped light detector
radiopure Nal crystals

 $\Box$  phonon threshold of 1keV: 10keV $\rightarrow$ 8.5 keV $\rightarrow$ 6.5keV $\rightarrow$ ...

□ particle discrimination: under investigation

Prototype measurement results: G. Angloher et al. JINST 12 P11007 (2017) F. Reindl et al., arXiv 1711.01482 Schäffner, K. et al. J Low Temp Phys (2018)

### COSINUS COLLABORATION @ present

#### www.cosinus.it



Karoline Schäffner Natalia di Marco Stefano Pirro Vanessa Zema

#### Detector development

**R&D** measurements

Theoretical framework

**MC** simulation

Data analysis

Setup design



Jochen Schieck Florian Reindl Christoph Schwertner M. Friedl S. Fichtinger Martin Stahlberg Alexander Fuss Daniel Schmiedmayer

#### Data analysis

Electronics

MC simulation

Software development



Federica Petricca Godehard Angloher Michele Mancuso Franz Pröbst

Sensor production



Gianluigi Pessina Paolo Carniti Claudio Gotti Lorenzo Pagnanini

Heater/bias electronics



### TWO PHASES: COSINUS $1\pi$ and $2\pi$

#### COSINUS $1\pi$ : initial phase

- 1<sup>st</sup> measurement with 10 modules for 100kg days
- Setup planned with 25 modules for 1000kg days

GOAL: confirm or rule out nuclear origin of DAMA

#### COSINUS $2\pi$ :

• increase in target mass, upgrade facility

**GOAL:** modulation search



F. Kahlhöfer, KS et al., JCAP 1805 (2018) no.05, 074

# COSINUS: INFRASTRUCTURE

- underground site
- water tank
- <sup>3</sup>He/<sup>4</sup>He- dilution refrigerator
- "dry well" to host the cryostat in the tank
- utility building (platform and service area)
- Faraday cage and clean room
- Funding granted:

MPRG grant, MPP: HEPHY, Vienna: INFN – CSN5 (2019): 3.115 Mio. Eur 100k Eur 28k Eur



## COSINUS: EXPERIMENTAL SETUP

#### Water tank dimensions:

- GEANT 4 MC simulations
   → final design almost completed
- Optical simulation for muon veto in progress

Utility building:

Design studies ongoing



- CDR
- TDR
- final executive construction plan
- construction
- cryostat commissioning
- final detector design
- installation and commissioning
- start data taking

submitted to SC of LNGS Q1 2020 Q1 2020 Q2 2020 - Q3 2020Q2 2020 Q3 2020 Q3 2020 – Q1 2021 Q2 2021





- 1997: DAMA presents at TAUP first evidence for the modulation
   → after more than 20 years the DAMA/LIBRA observation is still not cross-checked by a same-target experiment
- numerous Nal-based experiments à la DAMA in data taking or being set up
   → radiopure Nal crystals is the key-issue
- COSINUS develops the first Nal dark matter detector with particle discrimination
- Detector R&D to meet performance goals is ongoing
- CDR submitted and experimental setup design is in progress
- COSINUS-1π provides an opportunity to an early start of COSINUS and to obtain important physics results

# Thank you for your attention