Simulazione dei primi esperimenti di autoiniezione

Carlo Benedetti (Dip. Fisica Univ. Bologna & INFN, Bologna)

P. Londrillo, A. Sgattoni, P. Tomassini, G. Turchetti (Univ. & INFN Bologna) A. Bacci, V. Petrillo, A. R. Rossi, L. Serafini (INFN Milano)

FLAME (Frascati Laser for Acceleration and Multidisciplinary Experiments)

P =0.3 PW, Ti:Sa ($\lambda_0 = 0.8 \ \mu$ m), $\tau_{fwhm} = 20 \div 30$ fs

under installation @LNF (commissioning within 2010)

SITE will be a relevant part of the commissioning

SITE \Rightarrow production of GeV-class electron bunches from laser-plasma interaction using a gas-jet of few (e.q. 4) millimeters [no external guiding for the laser] entering directly into the "bubble" (\dagger, \ddagger) regime <u>without</u> significant pulse-evolution

$$\int c \tau_{fwhm} < R_{bub} \simeq w_0 \simeq 2 \sqrt{a_0} c / \omega_p \ (\sim \lambda_p) \Rightarrow$$
 short laser pulse!

bubble $\Rightarrow \begin{cases} a_0 \gtrsim 3.5 \div 4 \text{ (injection threshold)} \Rightarrow \text{ intense laser pulse!} \end{cases}$

$$v_{bub} \simeq v_g - v_{etch} \simeq c(1 - 3\omega_p^2/(2\omega_0^2)) < v_{elect} \simeq c$$

(†) Pukhov and Meyer-ter-vehn, Appl. Phys. B 74 (2002)

(‡) Gordienko and Pukhov, Phys. Plas. 12 (2005)

- Nonlinear 3D regime (bubble): phenomenological theory [W. Lu & al., PRSTAB 10 (2007)]
 - "stability" of the bubble: $k_p R_{bub} \simeq k_p w_0 \simeq 2\sqrt{a_0}$
 - dephasing length: $L_{deph} = \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R_{bub}$

pump depletion: $L_{pump \ depl} = \frac{\omega_0^2}{\omega_p^2} c \tau_{fwhm}$

e-energy (dephasing): $W[\text{GeV}] \simeq 1.7 \times \left(\frac{P[\text{TW}]}{100}\right)^{1/3} \left(\frac{10^{18}}{n_p[\text{cm}^{-3}]}\right)^{2/3} \left(\frac{0.8}{\lambda_0[\mu\text{M}]}\right)^{4/3}$

charge injected: $Q[pC] \simeq 400 \times \left(\frac{\lambda_0[\mu m]}{0.8}\right) \left(\frac{P[TW]}{100}\right)^{1/2}$

LIFE meeting, Frascati 08/07/2009 - p.3/30

• Nonlinear 3D regime (bubble) for FLAME-like lasers:

We take the waist w_0 (in μ m) as a free parameter ($R_{bub} \simeq w_0$), we have

	P=150 TW, $ au=24$ fs (l)	P=200 TW, $ au=30$ fs (II)
$n_p \ [{ m cm}^{-3}]$	$7.56 \cdot 10^{21} / w_0^3$	$8.72 \cdot 10^{21} / w_0^3$
$L_{deph}[\mum]$	$0.154 \times w_0^4$	$0.133 imes w_0^4$
$L_{pump\;depl}[\mum]$	$1.662 \times w_0^3$	$1.79 imes w_0^3$
Q [nC]	~ 0.5	~ 0.6
$ L_{pump \ depl} > L_{deph} = L_{acc} $	$w_0 < 10.8 \ (L_{acc} = 2 \ { m mm})$	$w_0 < 13.5 \ (L_{acc} = 4.4 \ \text{mm})$
$I_0 > 2.6 \cdot 10^{19} \text{ W/cm}^2$	$w_0 < 19 \ \mu$ m	$w_0 < 22~\mu{ m m}$
W_{peak} [MeV] \simeq 5.25 $ imes$ w_0^2	\sim 610 \sim 960	

 \Rightarrow N.B. beam loading \rightarrow "monochromatic" bunch even if $L_{acc} < L_{deph}$

Let's consider some examples:

#	L_{gasjet}	w_0	$I(a_0)$	n_p	L_{pd}	W_{peak}
	[mm]	[μ m]	$\left[10^{19} \ \frac{W}{cm^2}\right]$	$[10^{18} \text{ cm}^{-3}]$	[mm]	[GeV]
1 (I)	1.1	9	12 (7.7)	10	1.2	0.4
2 (II)	4.0	13.2	7.3 (5.8)	3.8	4.1	0.9
3 (II)	13	17.5	4.1 (4.3)	1.6	9.5 (!!)	1.6

 \Rightarrow 3D simulations with the PIC code ALaDyn to investigate in detail the acceleration process, in particular:

i. study properties of the accel. structure when $L_{acc} = L_{gasjet} \sim L_{pd}$

ii. study properties of the accelerated bunch

iii. perform the "fine-tuning" of analytical models (comp. cost very high)

• Case #1 (I): $L_{gasjet} = 1 \text{ mm}, n_p = 10^{19} \text{ e/cm}^{-3}, I_0 = 1.2 \cdot 10^{20} \text{ W/cm}^2$ (see LIFE/1)

• Case #1 (I): $L_{gasjet} = 1 \text{ mm}$ (see previous LIFE workshop)

case A	case B (not optimal $L_{acc} < L_{deph}$)
$(n_p = 10^{19} \text{ e/cm}^3, I_0 = 1.2 \cdot 10^{20} \text{ W/cm}^2)$	($n_p = 6 \cdot 10^{18} \text{ e/cm}^3$, $I_0 = 6.4 \cdot 10^{19} \text{ W/cm}^2$)
$W_{peak} = 164 \text{ MeV}$	$W_{peak} = 420 \text{ MeV}$
$\Delta W/W \sim 3$ %	$\Delta W/W \sim 8$ %
Considering the particles with	Considering the particles with
$ W - 164 < 10 \; \mathrm{MeV}$	$ W-420 < 70 \; \mathrm{MeV}$
$\sigma_x \simeq$ 0.7 μ m, $\sigma_{x'} \simeq$ 21 mrad	$\sigma_x \simeq$ 0.5 μ m, $\sigma_{x'} \simeq$ 5.9 mrad
$\epsilon_{xn}\simeq$ 4.9 mm mrad	$\epsilon_{xn}\simeq$ 2.3 mm mrad
$\sigma_y \simeq$ 0.6 μ m, $\sigma_{y'} \simeq$ 18 mrad	$\sigma_y \simeq$ 0.5 μ m, $\sigma_{y'} \simeq$ 5.7 mrad
$\epsilon_{yn}\simeq$ 3.4 mm mrad	$\epsilon_{yn} \simeq$ 2.4 mm mrad
$Q = 0.8 \; {\sf nC}$	$Q\simeq 0.5~{ m nC}$
$\sigma_z\simeq 2~\mu{ m m}$	$\sigma_z \simeq 0.94 \; \mu { m m}$
$I_{aver} \simeq 50 \text{ kA}$	$I_{aver}\simeq 67~{ m kA}$
	LIFE meeting, Frascati 08/07/2009 – p.7/30

• Case #2* (II): $L_{gasjet} = 4 \text{ mm}, n_p = 3 \cdot 10^{18} \text{ e/cm}^{-3}, I_0 = 5.3 \cdot 10^{19} \text{ W/cm}^2$

 $ct = 200 \ \mu \text{m}$

 $ct = 500 \ \mu \text{m}$

 $ct = 1600 \ \mu \mathrm{m}$

• Case #2* (II): $L_{gasjet} = 4 \text{ mm}, n_p = 3 \cdot 10^{18} \text{ e/cm}^{-3}, I_0 = 5.3 \cdot 10^{19} \text{ W/cm}^2$

 $ct = 2500 \ \mu \text{m}$

 $ct = 4000 \ \mu \text{m}$

LIFE meeting, Frascati 08/07/2009 – p.9/30

• Case #2* (II): $L_{gasjet} = 4 \text{ mm} \Rightarrow$ final parameters of the bunch (@ $ct = 4000 \mu$ m)

 $W_{peak} \simeq 900 \text{ MeV}$ $\Delta W/W = 3.3 \%$

Considering the particles with |W - 900| < 90 MeV

 $\sigma_x \simeq 0.5 \ \mu$ m $\sigma_{x'} \simeq 2.8 \ {
m mrad}$ $\epsilon_{xn} \simeq 2.3 \ {
m mm}$ mrad

 $\sigma_y \simeq$ 0.6 μ m $\sigma_{y'} \simeq$ 2.8 mrad $\epsilon_{yn} \simeq$ 2.8 mm mrad

Q = 0.62 nC $\sigma_z \simeq 1.8 \ \mu\text{m}$ $I_{aver} \simeq 44 \text{ kA}$

• Case #2* (II): slice analysis (for FEL-like applications: $\lambda_w = 2 \text{ cm}$, $a_w = 2$, $\lambda_{FEL} \sim 10 \text{ nm}$, $\rho_{FEL} \sim 5 \cdot 10^{-3} \Rightarrow L_{slice} \simeq L_c \simeq 0.1 \ \mu\text{m}$, $\epsilon_n < 1.2 \text{ mm}$ mrad, ($\Delta W/W$) < 0.5 %)

 \Rightarrow (to date) slice parameters not suitable to drive a FEL ($\Delta E/E$, ϵ_n too large !) \Rightarrow all the issues related to the extraction from the plasma and matching have been neglected LIFE meeting, Frascati 08/07/2009 - p.11/30

• Case #3* (II): $n_p = 1.5 \cdot 10^{18} \text{ e/cm}^{-3}$, $I_0 = 3.6 \cdot 10^{19} \text{ W/cm}^2$ [W. Lu et al., PRSTAB]: $L_{acc} < L_{pd} \simeq 1 \text{ cm} < L_{deph} \simeq 1.3 \text{ cm}$

• Acceleration inside the bubble (for simulation # 2): the dynamic of the bunch can be described by a simplified phenomenological model (dashed lines) where all the forces are linear

 \Rightarrow no significant emittance degradation during acceleration (less than 15% increase) \Rightarrow the emittance is "high" at the injection

• Injection into the bubble: where do accelerated particles came from?

• Injection into the bubble: where do accelerated particles came from?

 \Rightarrow the motion **becomes turbulent** when the electron sheet reaches the back of the bubble

• Structure of the wakefield (transverse fields)

 E_x

40 Inverted field [mn] × -40120 200 Z [um]

 B_y

 $\begin{array}{l} \Rightarrow E_x^{max} \sim 5 \cdot 10^{11} \text{ V/m} \\ \Rightarrow B_y^{max} \sim 1.7 \cdot 10^3 \text{ T} \end{array} \end{array}$

• Focus on the injection mechanism

- Ongoing activities:
 - Start-to-end simulation: bunch generation in the plasma + extraction [with Milano]
 - Injection at density downramp: better beam quality (emittance, momentum spread) [with Milano]
 - External injection in a laser-driven plasma wave (see previous LIFE workshop): $L_{acc} \sim 10 \text{ cm}, \Delta E \sim 2 \text{ GeV}, \Delta E/E < 3 \%, \epsilon_n < 1.5 \text{ mm mrad} \Rightarrow \text{self consistent}$ evolution of the laser pump has been included [P. Tomassini]

LIFE meeting, Frascati 08/07/2009 – p.19/30

LIFE meeting, Frascati 08/07/2009 – p.20/30

Injection at density downramp

- Nonlinear "1D-like" regime: generation of a high current e^- bunch containing slices with low emittance and low momentum spread (see AOFEL ^{*a*})
- \Rightarrow a properly modulated gas-jet is required (injection after density downramp ^b)

^aV. Petrillo *et al.*, PRSTAB 11, 070703 (2008)

^bS. Bulanov et al., PRE 58/5, R5257 (1998) / P. Tomassini et al., PRSTABIE, nle21h3, Orlas (2003) 2009 - p.21/30

• Laser parameters:

λ_0 [μ m]	I [W/cm 2]	$ au_{FWHM}$ [fs]	waist [μ m]
0.8	$8.5 imes 10^{18}$	20	23

• Plasma profile:

$n_0 \ [imes 10^{19} { m cm}^{-3}]$	$\ell_{trans} \left[\mu \ m ight]$	$n_1 \ [imes 10^{19} \ { m cm}^{-3}]$	L_{acc} [μ m]	$n_2 \ [imes 10^{19} \ { m cm}^{-3}]$
1.0	10	0.75	330	0.4

Injection at density downramp

• Slice analysis of the accelerated bunch (3D simulation)

Injection at density downramp

We can further optimize the properties of the accelerated bunch increasing the current*

- 1 the most practical way is to increase w_0 to collect more charge during the wave breaking $\Rightarrow Q \propto w_0^2$
- 2 σ_z of the bunch is determined only by ℓ_{trans} (doesn't depend on w_0) $\Rightarrow | I \propto w_0^2$
- 3 the dynamics is \sim 1D (small transverse effects): the r.m.s. parameters of the best slices (the ones in the front part of the bunch) are not affected by the increase in w_0

$w_0 ~ [\mu { m m}]$	σ_z [μ m]	Q_{bunch} [nC]	I^s [kA]	I^{s}/w_{0}^{2}
23	1.50	0.2/0.25	5-7	0.011
30	1.55	0.3/0.4	9-12	0.012
40	1.46	0.6/0.8	20-24	0.014
50	1.56	1.0/1.2	30-32	0.012

 \Rightarrow in all the (2D) sim. changing w_0 we obtained $(\delta\gamma/\gamma)^s \sim 0.3/0.5\%$, $\epsilon_n^s \sim 0.1/0.2$ mm mrad

* C. Benedetti et al., "PIC simulations of the production · · · ", NIM-A (2009)

• Proposed by Paolo Tomassini (LIFE workshop, Frascati, 19-20/02/09): preliminary study!

 \Rightarrow we consider the injection of a high quality bunch (*e.g.* from SPARC) into the plasma wave generated by FLAME

Advantages	Limits
1. good quality for the beam and high energy (> 2 GeV in \sim 10 cm) 2. flexibility in the choice of the final energy	1. bunch length: must be \ll of λ_p 2. jitter in the injection phase potentially detri- mental 3. the plasma profile must be accurately de- signed

Bunch: Q = 25 pC, E = 150 MeV, $\delta E/E = 0.2$ %, $\epsilon_n = 0.8$ mm mrad, $\sigma_x = 5 \ \mu$ m, $\sigma_z = 2.5 \ \mu$ m, $I \simeq 1$ kA

Plasma: channel for the guiding of the laser up to $20Z_R$ and "tailoring" of the longitudinal density profile to control the dephasing (energy spread): $n_p = (1.5 \rightarrow 2.5) \cdot 10^{17} \text{ e/cm}^3$, $L_p = 10 \text{ cm}$

Laser: E_l =7 J, τ = 30 fs, $w_0 = 32.5 \ \mu$ m (minimum)

 \Rightarrow injection in the second bucket of the nonlinear plasma wave

Goals:

- best compromise between beam quality and high energy
- final energy above 2 GeV
- global energy spread below 4 %
- normalized emittance below 1.5 mm mrad
- good beam slice properties

Simulations:

- performed with Q-fluid (by Paolo Tomassini) 2D cylindrical, fluid with frozen laser-pump + 1D PIC (only for the laser) to have a first estimate of the laser depletion (~ 15 % in 10 cm)
- ² 2D PIC simulations (only for the laser) are quite demanding but **necessary** and **planned** to study self-focusing since $P_l > P_c$
 - 3D PIC are not feasible ($Lacc \sim 10$ cm)

QSA model for the laser pulse evolution under implementation NOW + merging with ALaDyn

Key feature of this schema: adiabatic (transverse) compression of the bunch during injection provided by the focusing of the laser pulse ($w_0 = 130 \rightarrow 32.5 \ \mu$ m) \Rightarrow matching of the bunch in order to minimize spot oscillations and emittance growth ($\sigma_{matched} \simeq 1 \ \mu$ m $< \sigma_x = 5 \ \mu$ m)

without matching

Key feature of this schema: adiabatic (transverse) compression of the bunch during injection provided by the focusing of the laser pulse ($w_0 = 130 \rightarrow 32.5 \ \mu$ m) \Rightarrow matching of the bunch in order to minimize spot oscillations and emittance growth ($\sigma_{matched} \simeq 1 \ \mu$ m $< \sigma_x = 5 \ \mu$ m)

Lineout of the density/fields and longitudinal phase space at two different simulation times

 \Rightarrow good slice emittance/mom spread (slices 5-20) [potentially interesting for XFEL applications]

Jitter in the injection phase