## SPARC FEL – Status & perspectives

L. Giannessi ENEA – C.R. Frascati On behalf of the SPARC collaboration

Frascati, 8/6/2009

## SPARC



## SASE results



# Spectra



Spazio fasi rielaborato da D. Filippetto, calibrazione deflettore del 18.03.2009 ...



### Q=250 pC Ex=2 mm.mrad Ey=2.7 mm.mrad



LIFE Meeting Frascati 8.06.2009



# Next steps

### SASE

- SATURATION
- HARMONICS
  - In vacuum filter wheel
  - In vacuum diagnostics (spectrometer)



### SEEDING EXPERIMENTS

- Synchronization
  - First synchronization tests with two lasers
  - Optical transfer line to the intermediate level
  - Streak camera set-up
- Seeding with 400nm
- Seeding with harmonics in gas
- Cascaded FEL configurations



# SASE





**Optimized Working Point** (C. Ronsivalle) **BEAM PARAMETERS AT CATHODE** 

> Q=500 pC σx=σy=420 um

Laser pulse: flat top FWHM=7.3 psec (measured on 18 June 2009)

Launching phase at the cathode: 22° (instead of the usual 30°) in order to achieve a partial compensation of the space charge bunch lengthening by RF compression

Note: this means that on the phase scan curve the working point phase has to be moved toward phases with lower charge. Q=500 pC is the charge at the new working phase!

#### Transverse and longitudinal envelopes 3.5 Xrms(mm) 3 Exn(mm-mrad) Sigmaz(mm) 2.5 Isol=158 A\* ີ ແ ຫຼັງ 1.5 1.8 mm-mrad\*\* 1 0.5 0 200 800 1000 400 600 1200 0 Z(cm)

\*This value can be taken as a reference point around which to perform the optimization

\*\*In order to simulate more realistic conditions a worst value for the estimated thermal emittance has been used and not particular care to projected emittence optimization for the gun-solenoid have been taken

### Parmela Simulation 50k particles (Ronsivalle)

### BEAM AT LINAC OUTPUT



# Slice analysis (Ronsivalle)



### •Max slice current=58 A

•Emittance of slice with max. current= 1.75 mmmrad

•Average current 51.8 A















### Harmonic Cascaded FEL







# Fresh bunch injection technique

 Keed
 λ=400nm
 λ=200nm
 λ=380-390nm
 λ=200nm
 λ=100nm

 Modulator
 Radiator
 Dispersion
 Modulator
 Radiator

# Self seeded: Regenerative amplifier



# FEL experiments

SASE full saturation Higher order harmonics

#### Seeding

- SEED synchronization
- SEEDED operation @400 nm
- SEEDED operation with HHG
  - CASCADED FEL operation

### To do:

- Increase current & energy
- Increase reliability
- Set up for short wavelengths