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Medicine	
  in	
  digital	
  age:	
  	
  

disrup?ve	
  innova?on	
  of	
  Ar?ficial	
  Intelligence	
  
	
  

•  for	
   clinicians,	
   predominantly	
   via	
   rapid,	
   accurate	
  
image	
  interpreta?on;	
  	
  

•  for	
   health	
   systems,	
   by	
   improving	
   workflow	
   and	
  
the	
  poten?al	
  for	
  reducing	
  medical	
  errors;	
  	
  

•  and	
   for	
   pa?ents,	
   by	
   enabling	
   them	
   to	
   process	
  
their	
  own	
  data	
  to	
  promote	
  health.	
  	
  

High-­‐performance	
  medicine:	
  	
  
the	
  convergence	
  of	
  human	
  and	
  ar?ficial	
  intelligence	
  	
  
	
  
Limita?ons:	
  privacy	
  and	
  security,	
  and	
  lack	
  of	
  transparency.	
  	
  



Ar?ficial	
  Intelligence	
  /Cogni?ve	
  compu?ng	
  
	
  

•  Machine	
  learning	
  (supervised	
  or	
  unsupervised)	
  	
  
–  Data	
   mining	
   (used	
   also	
   for	
   Natural	
   Language	
   Process	
   and	
   Images	
  

classifica$on)	
  	
  
•  Classifica$on	
  trees	
  (for	
  classifying/predic$ng	
  discrete	
  outcomes,	
  e.g.	
  bad/good)	
  	
  
•  Regression	
  trees	
  (for	
  con$nuous	
  outcomes,	
  e.g.	
  cost	
  forecas$ng)	
  	
  
•  Belief	
  networks	
  (learning	
  of	
  probabilis$c	
  models)	
  	
  
•  Support	
  vectors	
  machines	
  (learning	
  of	
  mathema$cal	
  models)	
  	
  
•  Neural	
  networks	
  (learning	
  of	
  mathema$cal	
  models)	
  

	
  »	
  Deep	
  learning	
  	
  
•  Condi$onal	
  random	
  fields	
  	
  
•  Reinforcement	
  learning	
  	
  

–  Process	
  mining	
  
•  temporal	
  paKern	
  discovery	
  	
  

•  Complex	
  Network	
  and	
  emergent	
  behaviour	
  (cogni$ve	
  and	
  physiological	
  
phenomena	
   result	
   from	
   a	
   complex	
   series	
   of	
   interac$ons	
   that	
   occur	
  
hierarchically)	
  	
  
–  Dynamic	
  interac$ons	
  
–  Emergence	
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  for	
  personalised	
  decision	
  making	
  	
  
	
  

Disruptive Innovation – Final opinion 

 35 

 

problem that is bothering the patient and on the value that he/she gives to having an 

operation which is not guaranteed to be one hundred percent successful. The model for 

personalised decision-making, which derives from the work of the late Professor David 

Sackett, the creator of evidence-based medicine, is very well summarised in Figure 3. It 

can and should be applied to any decision such as those regarding knee replacement, 

genomic information, molecular diagnostics and pharmacogenomics. This model was 

further developed by De Maeseneer et al, with the translation of values into “goals” and 

the integration of the concept of “functional status” (De Maeseneer et al, 2012).  

 

Figure 3. The model for personalised decision making 

 

 

A new dawn or false promise 

There was great interest in genomic medicine, and its potential to make care more 

precise and personalised. There are indications that “epigenomics” (i.e. all the molecules 

that are “around” the genome and that “stear the genome operationally”) is probably 

more important in understanding why a person with a certain genome becomes ill, while 

another with an identical genome does not. However, the development of this field is not 

without limitations and problems. These issues will be aggravated by the increasing 

ability of individuals to have their human genome assessed commercially. In fact, several 

such services already exist. These services issue reports expressed in terms of relative 

percentage, which could lead to the generation of high levels of  anxiety  and/or  demand  
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researchers understand brain circuitry and build brain–machine 
interfaces172,178,179. Machine vision tracking of human and animal 
behavior with a transfer-learning algorithm is yet another example 
of the progress being made180.

Drug discovery is being revamped with the use of AI at many 
levels, including sophisticated natural language processing searches 
of the biomedical literature, data mining of millions of molecular 
structures, designing and making new molecules, predicting off-
target effects and toxicity, predicting the right dose for experimen-
tal drugs, and developing cellular assays at a massive scale181–184. 
There is new hope that preclinical animal testing can be reduced 
via machine-learning prediction of toxicity185. AI cryptography has 
been used to combine large proprietary pharmaceutical company 
datasets and discover previously unidentified drug interactions186. 
The story of the University of Cambridge and Manchester’s robot 
‘Eve’ and how it autonomously discovered an antimalarial drug that 
is a constituent of toothpaste has galvanized interest in using AI to 
accelerate the process, with a long list of start-ups and partnerships 
with major pharmaceutical firms181,187,188.

Limitations and challenges
Despite all the promises of AI technology, there are formidable 
obstacles and pitfalls. The state of AI hype has far exceeded the 
state of AI science, especially when it pertains to validation and 
readiness for implementation in patient care. A recent example is 
IBM Watson Health’s cancer AI algorithm (known as Watson for 
Oncology). Used by hundreds of hospitals around the world for 
recommending treatments for patients with cancer, the algorithm 
was based on a small number of synthetic, nonreal cases with very 
limited input (real data) of oncologists189. Many of the actual out-
put recommendations for treatment were shown to be erroneous,  
such as suggesting the use of bevacizumab in a patient with severe 

bleeding, which represents an explicit contraindication and ‘black 
box’ warning for the drug189. This example also highlights the poten-
tial for major harm to patients, and thus for medical malpractice, by 
a flawed algorithm. Instead of a single doctor’s mistake hurting a 
patient, the potential for a machine algorithm inducing iatrogenic 
risk is vast. This is all the more reason that systematic debugging, 
audit, extensive simulation, and validation, along with prospective 
scrutiny, are required when an AI algorithm is unleashed in clinical 
practice. It also underscores the need to require more evidence and 
robust validation to exceed the recent downgrading of FDA regula-
tory requirements for medical algorithm approval190.

There has been much written about the black box of algorithms, 
and much controversy surrounding this topic191–193; especially in 
the case of DNNs, it may not be possible to understand the deter-
mination of output. This opaqueness has led to both demands 
for explainability, such as the European Union’s General Data 
Protection Regulation requirement for transparency—deconvolu-
tion of an algorithm’s black box—before an algorithm can be used 
for patient care194. While this debate of whether it is acceptable to use 
nontransparent algorithms for patient care is unsettled, it is notable 
that many aspects of the practice of medicine are unexplained, such 
as prescription of a drug without a known mechanism of action.

Inequities are one of the most important problems in healthcare 
today, especially in the United States, which does not provide care 
for all of its citizens. With the knowledge that low socioeconomic 
status is a major risk factor for premature mortality195, the dispro-
portionate use of AI in the ‘haves,’ as opposed to the ‘have-nots,’ 
could widen the present gap in health outcomes. Intertwined with 
this concern of exacerbating pre-existing inequities is embedded 
bias present in many algorithms due to lack of inclusion of minori-
ties in datasets. Examples are the algorithms in dermatology that 
diagnose melanoma but lack inclusion of skin color47 and the use 
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Fig. 5 | The analogy between self-driving cars and medicine. Level 5, full automation with no potential for human backup of clinicians, is not the objective. 
Nor is Level 4, with human backup in very limited conditions. The goal is for synergy, offsetting functions that machines do best combined with those that 
are best suited for clinicians. Credit: Debbie Maizels/Springer Nature
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Other studies have assessed deep-learning algorithms for clas-
sifying breast cancer43 and lung cancer40 without direct compari-
son with pathologists. Brain tumors can be challenging to subtype, 
and machine learning using tumor DNA methylation patterns via 
sequencing led to markedly improved classification compared with 
pathologists using traditional histological data44,45. DNA meth-
ylation generates extensive data and at present is rarely performed 
in the clinic for classification of tumors, but this study suggests 
another potential for AI to provide improved diagnostic accuracy in 
the future. A deep-learning algorithm for lung cancer digital pathol-
ogy slides not only was able to accurately classify tumors, but also 
was trained to detect the pattern of several specific genomic driver 
mutations that would not otherwise be discernible by pathologists33.

The first prospective study to test the accuracy of an algorithm 
classifying digital pathology slides in a real clinical setting was an 
assessment of the identification of presence of breast cancer micro-
metastases in slides by six pathologists compared with a DNN (that 
had been retrospectively validated34). The combination of pathologists  

and the algorithm led to the best accuracy, and the algorithm mark-
edly sped up the review of slides35. This study is particularly notable, 
as the synergy of the combined pathologist and algorithm interpreta-
tion was emphasized instead of the pervasive clinician-versus-algo-
rithm comparison. Apart from classifying tumors more accurately by 
data processing, the use of a deep-learning algorithm to sharpen out-
of-focus images may also prove useful46. A number of proprietary 
algorithms for image interpretation have been approved by the Food 
and Drug Administration (FDA), and the list is expanding rapidly 
(Table 2), yet there have been few peer-reviewed publications from 
most of these companies. In 2018, the FDA published a fast-track 
approval plan for AI medical algorithms.

Dermatology. For algorithms classifying skin cancer by image 
analysis, the accuracy of diagnosis of deep-learning networks has 
been compared with that of dermatologists. In a study using a 
large training dataset of nearly 130,000 photographic and derma-
scopic digitized images, 21 US board-certified dermatologists were 
at least matched in performance by an algorithm, which had an 
AUC of 0.96 for carcinoma47 and of 0.94 for melanoma specifically. 
Subsequently, the accuracy of melanoma skin cancer diagnosis by a 
group of 58 international dermatologists was compared with a con-
volutional neural network; the mean ROCs were 0.79 versus 0.86, 
respectively, reflecting an improved performance of the algorithm 
compared with most of the physicians48. A third study carried out 
algorithmic assessment of 12 skin diseases, including basal cell car-
cinoma, squamous cell carcinoma, and melanoma, and compared 
this with 16 dermatologists, with the algorithm achieving an AUC 
of 0.96 for melanoma49. None of these studies were conducted in the 
clinical setting, in which a doctor would perform physical inspec-
tion and shoulder responsibility for making an accurate diagnosis. 
Notwithstanding these concerns, most skin lesions are diagnosed 
by primary care doctors, and problems with inaccuracy have been 
underscored; if AI can be reliably shown to simulate experienced 
dermatologists, that would represent a significant advance.

Ophthalmology. There have been a number of studies comparing  
performance between algorithms and ophthalmologists in diagnosing  

Table 1 | Peer-reviewed publications of AI algorithms compared 
with doctors

Specialty Images Publication 

Radiology/
neurology

CT head, acute 
neurological events

Titano et al. 27

CT head for brain 
hemorrhage

Arbabshirani et al.19

CT head for trauma Chilamkurthy et al.20

CXR for metastatic lung 
nodules

Nam et al.8

CXR for multiple findings Singh et al.7

Mammography for breast 
density

Lehman et al.26

Wrist X-ray* Lindsey et al.9

Pathology Breast cancer Ehteshami Bejnordi et al.41

Lung cancer (!+ !driver 
mutation)

Coudray et al.33

Brain tumors 
(!+ !methylation)

Capper et al.45

Breast cancer metastases* Steiner et al.35

Breast cancer metastases Liu et al.34

Dermatology Skin cancers Esteva et al.47

Melanoma Haenssle et al.48

Skin lesions Han et al.49

Ophthalmology Diabetic retinopathy Gulshan et al.51

Diabetic retinopathy* Abramoff et al.31

Diabetic retinopathy* Kanagasingam et al.32

Congenital cataracts Long et al.38

Retinal diseases (OCT) De Fauw et al.56

Macular degeneration Burlina et al.52

Retinopathy of prematurity Brown et al.60

AMD and diabetic 
retinopathy

Kermany et al.53

Gastroenterology Polyps at colonoscopy* Mori et al.36

Polyps at colonoscopy Wang et al.37

Cardiology Echocardiography Madani et al.23

Echocardiography Zhang et al.24

Prospective studies are denoted with an asterisk.

Table 2 | FDA AI approvals are accelerating

Company FDA Approval Indication

Apple September 2018 Atrial fibrillation detection
Aidoc August 2018 CT brain bleed diagnosis
iCAD August 2018 Breast density via 

mammography
Zebra Medical July 2018 Coronary calcium scoring
Bay Labs June 2018 Echocardiogram EF 

determination
Neural Analytics May 2018 Device for paramedic stroke 

diagnosis
IDx April 2018 Diabetic retinopathy diagnosis
Icometrix April 2018 MRI brain interpretation
Imagen March 2018 X-ray wrist fracture diagnosis
Viz.ai February 2018 CT stroke diagnosis
Arterys February 2018 Liver and lung cancer (MRI, CT) 

diagnosis
MaxQ-AI January 2018 CT brain bleed diagnosis
Alivecor November 2017 Atrial fibrillation detection via 

Apple Watch

Arterys January 2017 MRI heart interpretation
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the future. A deep-learning algorithm for lung cancer digital pathol-
ogy slides not only was able to accurately classify tumors, but also 
was trained to detect the pattern of several specific genomic driver 
mutations that would not otherwise be discernible by pathologists33.
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classifying digital pathology slides in a real clinical setting was an 
assessment of the identification of presence of breast cancer micro-
metastases in slides by six pathologists compared with a DNN (that 
had been retrospectively validated34). The combination of pathologists  

and the algorithm led to the best accuracy, and the algorithm mark-
edly sped up the review of slides35. This study is particularly notable, 
as the synergy of the combined pathologist and algorithm interpreta-
tion was emphasized instead of the pervasive clinician-versus-algo-
rithm comparison. Apart from classifying tumors more accurately by 
data processing, the use of a deep-learning algorithm to sharpen out-
of-focus images may also prove useful46. A number of proprietary 
algorithms for image interpretation have been approved by the Food 
and Drug Administration (FDA), and the list is expanding rapidly 
(Table 2), yet there have been few peer-reviewed publications from 
most of these companies. In 2018, the FDA published a fast-track 
approval plan for AI medical algorithms.

Dermatology. For algorithms classifying skin cancer by image 
analysis, the accuracy of diagnosis of deep-learning networks has 
been compared with that of dermatologists. In a study using a 
large training dataset of nearly 130,000 photographic and derma-
scopic digitized images, 21 US board-certified dermatologists were 
at least matched in performance by an algorithm, which had an 
AUC of 0.96 for carcinoma47 and of 0.94 for melanoma specifically. 
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Figura 2.2 Diagramma di flusso relativo alla costruzione della network cerebrale: 1.Acquisizione 
immagini di R-fMRI, 2.Parcellizzazione anatomica per analisi basata su ROI, 3.Estrazione delle 
serie temporali di connettività funzionale tra le regioni cerebrali, 4.Generazione delle matrici di 

connettività, 5.Analisi del grafo tramite metriche descrittive [2] 
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•  In	
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  datacenter	
  it	
  is	
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  to	
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  a	
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pipeline	
  for	
  preprocessing	
  and	
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  of	
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and	
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  neuroimaging	
  data	
  by	
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  or	
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•  In	
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  be	
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with	
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  in	
  a	
  highly	
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and	
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A B S T R A C T

Functional connectivity analysis techniques have broadly applied to capture phenomenological aspects of the
brain, e.g., by identifying characteristic network topologies for healthy and disease-affected populations, by
highlighting several areas important for the global efficiency of the brain during some cognitive processing and at
rest. However, most of the known methods for quantifying functional coupling between fMRI time series are
focused on linear correlation metrics. In this work, we propose a multidimensional framework to extract multiple
descriptors of the dynamic interaction among BOLD signals in their phase space. A set of metrics is extracted from
the cross recurrence plots of each couple of signals to form a multilayer connectivity matrix in which each layer is
related to a specific complex dynamic phenomenon. The proposed framework is used to characterize functional
abnormalities during a working memory task in patients with schizophrenia. Some topological descriptors are
then extracted from both multilayer connectivity matrices and the most used Pearson-based connectivity net-
works to perform a binary classification task of normal controls and patients. The results show that the proposed
connectivity model outperforms the statistical correlation-based connectivity in accuracy, sensitivity and speci-
ficity. Moreover, the statistical analysis of the selected features highlights that several dynamic metrics could
better identify disease-related dynamic states in brain activity than the statistical correlation among physiological
signals.

1. Introduction

Physiological and biological systems involve complex processes whose
dynamics exhibit nonlinear interactions (Deisboeck and Kresh, 2007). In
particular, the complexity of the brain arises from different aspects.

In recent decades, scientists have tried to incorporate the dense
network of relationships and mechanisms of large-scale synchronization
that are the basis of the functioning of neuronal networks by using the
complex network framework (Sporns, 2010). The network formulation
describes the brain as a graph composed by nodes (i.e., brain regions)
linked by edges (their functional connectivity) (Bullmore and Sporns,
2009; Sporns, 2010, 2011). Neuroimaging techniques have been

extensively applied to investigate the macroscale functional organization
of the human brain (Fornito et al., 2016). Many functional connectivity
(FC) analysis techniques have been proposed to uncover different dy-
namic neural mechanisms such as communication, information pro-
cessing and neural integration from functional magnetic resonance
imaging (fMRI) scans (Sporns et al., 2005).

The functional connectome indicates the complete map of the func-
tional links among all the regions of interest in which the total brain is
partitioned. Such connections usually quantify the statistical similarity
between the time series at each pair of regions, i.e., the functional con-
nectivity (Bullmore and Bassett, 2011). Although the high spatial reso-
lution of the fMRI data allows a detailed mapping of the connections, the
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A B S T R A C T

Functional connectivity analysis techniques have broadly applied to capture phenomenological aspects of the
brain, e.g., by identifying characteristic network topologies for healthy and disease-affected populations, by
highlighting several areas important for the global efficiency of the brain during some cognitive processing and at
rest. However, most of the known methods for quantifying functional coupling between fMRI time series are
focused on linear correlation metrics. In this work, we propose a multidimensional framework to extract multiple
descriptors of the dynamic interaction among BOLD signals in their phase space. A set of metrics is extracted from
the cross recurrence plots of each couple of signals to form a multilayer connectivity matrix in which each layer is
related to a specific complex dynamic phenomenon. The proposed framework is used to characterize functional
abnormalities during a working memory task in patients with schizophrenia. Some topological descriptors are
then extracted from both multilayer connectivity matrices and the most used Pearson-based connectivity net-
works to perform a binary classification task of normal controls and patients. The results show that the proposed
connectivity model outperforms the statistical correlation-based connectivity in accuracy, sensitivity and speci-
ficity. Moreover, the statistical analysis of the selected features highlights that several dynamic metrics could
better identify disease-related dynamic states in brain activity than the statistical correlation among physiological
signals.

1. Introduction

Physiological and biological systems involve complex processes whose
dynamics exhibit nonlinear interactions (Deisboeck and Kresh, 2007). In
particular, the complexity of the brain arises from different aspects.

In recent decades, scientists have tried to incorporate the dense
network of relationships and mechanisms of large-scale synchronization
that are the basis of the functioning of neuronal networks by using the
complex network framework (Sporns, 2010). The network formulation
describes the brain as a graph composed by nodes (i.e., brain regions)
linked by edges (their functional connectivity) (Bullmore and Sporns,
2009; Sporns, 2010, 2011). Neuroimaging techniques have been

extensively applied to investigate the macroscale functional organization
of the human brain (Fornito et al., 2016). Many functional connectivity
(FC) analysis techniques have been proposed to uncover different dy-
namic neural mechanisms such as communication, information pro-
cessing and neural integration from functional magnetic resonance
imaging (fMRI) scans (Sporns et al., 2005).

The functional connectome indicates the complete map of the func-
tional links among all the regions of interest in which the total brain is
partitioned. Such connections usually quantify the statistical similarity
between the time series at each pair of regions, i.e., the functional con-
nectivity (Bullmore and Bassett, 2011). Although the high spatial reso-
lution of the fMRI data allows a detailed mapping of the connections, the
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pαi ðtÞ ¼
XN

j¼1

wα
ijp

α
j ðt $ 1Þ
sαj

(5)

where the iterations will stop if the steady state of the p values of all the
nodes is reached.

At the end, a 91% 14688 matrix is constructed, in which each feature
is labelled as: rqa layer - graph metric - roi according to the layer from
which it belongs, the graph metric and the node (ROI) of the network.

In order to compare the phase space approach to the temporal anal-
ysis, functional connectivity for each subject was also assessed by
computing the Pearson correlation coefficient between all pairwise
combinations of ROI time series:

r ¼
PN

n¼1ðxn $ xÞðyn $ yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1ðxn $ xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1ðyn $ yÞ2

q (6)

where fxigNi¼1 and fyigNi¼1 are the two time series and x and y denote their

sample means. Then, the same local graph metrics were extracted from
the connectivity matrices resulting in a 91% 864 matrix, in which each
feature is labelled as: graph metric - roi.

3.2. RQA metrics

As already mentioned, a CRP enables the comparison of the trajec-
tories of two distinct systems in the same embedding space (Marwan and
Kurths, 2002). A CRP provides information on the degree of similarity of
each state of a system with any other state of the second system. For two
systems with trajectories respectively x!i ði ¼ 1;…;NÞ and y!j ðj ¼ 1;…;

NÞ, the CRP is defined as:

CRi;jðεÞ ¼ Θ
"
ε$

#### x!i $ y!j

####$ (7)

where Θ is the Heaviside function, ε is a threshold for closeness, N is the
number of considered states for each system and jj &jj a norm function. A

Fig. 1. Flow-chart showing the multi-recurrence framework and the comparison with the Pearson-based functional connectivity.
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scores during the two conditions and the predicted scores for both Pearson
and multi-recurrence framework in order to evaluate the prediction per-
formance. As shown in Table 5, none of the prediction performance was
statistically significant. Further details are provided in SI-Fig. 3.

5. Discussion

5.1. Significant RQA layers

In this work a novel approach to investigate the interacting behaviour
of neural dynamics is shown. In particular, a multidimensional

framework to map the coupling interaction of fMRI time series into a
common phase space and extract dynamic descriptors by means of cross
recurrence quantification analysis is proposed. The aim of this study was
to demonstrate that generalized indexes of synchronization computed
from CRP together with a complex network-based approach could be
effectively used to reveal further insights into different cognitive mech-
anisms in the presence of psychiatric disorders such schizophrenia.

Many studies have explored the brain at various levels of details,
confirming its multi-scale nature (Betzel and Bassett, 2017). In particular,
the brain has shown multiple temporal scales with behaviour ranging
from milliseconds to the entire lifespan and can be explored at different
topological scales ranging from individual nodes to the whole network.

Recently, the phase space reconstruction has been used to perform a
mutual connectivity analysis (MCA) to estimate directed links among

Table 3
Significant ROIs with MNI coordinates for the classification of the control/
schizophrenic subjects during the 2-back condition.

ROI MNI coordinates

x y z

A46, area 46 L ! 28 56 12
A44op, opercular area 44 R 42 22 3
A41/42, area 41/42 L ! 54 ! 32 12
TE1.0 and TE1.2 L ! 50 ! 11 1
A22c, caudal area 22 R 66 ! 20 6
aSTS, anterior superior temporal sulcus L ! 58 ! 20 ! 9
cpSTS, caudoposterior superior temporal sulcus R 57 ! 40 12
A7c, caudal area 7 L ! 15 ! 71 52
A2, area 2 R 48 ! 24 48
cCunG, caudal cuneus gyrus R 8 ! 90 12
GP, globus pallidus R 22 ! 2 3
NAC, nucleus accumbens L ! 17 3 ! 9
vmPu, ventromedial putamen L ! 23 7 ! 4
vmPu, ventromedial putamen R 22 8 ! 1
dlPu, dorsolateral putamen R 29 ! 3 1

Fig. 7. Slice view of the most significant ROIs for the classification of the control/schizophrenic subjects during the 0-back condition.

Table 4
Significant ROIs with MNI coordinates for the classification of the control/
schizophrenic subjects during the 0-back condition.

ROI MNI coordinates

x y z

A9/46v, ventral area 9/46 R 42 44 14
A1/2/3ll, area1/2/3 (lower limb region) L ! 8 ! 38 58
A35/36c, caudal area 35/36 L ! 25 ! 25 ! 26
dmPOS, dorsomedial parietooccipital sulcus(PEr) L ! 12 ! 67 25
A1/2/3ulhf, area 1/2/3 L ! 50 ! 16 43
A1/2/3tonIa, area 1/2/3 L ! 56 ! 14 16
dIa, dorsal agranular insula L ! 34 18 1
dId, dorsal dysgranular insula R 38 5 5
rCunG, rostral cuneus gyrus L ! 5 ! 81 10
cCunG, caudal cuneus gyrus L ! 6 ! 94 1
vmPOS, ventromedial parietooccipital sulcus L ! 13 ! 68 12
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Functional connectivity analysis techniques have broadly applied to capture phenomenological aspects of the
brain, e.g., by identifying characteristic network topologies for healthy and disease-affected populations, by
highlighting several areas important for the global efficiency of the brain during some cognitive processing and at
rest. However, most of the known methods for quantifying functional coupling between fMRI time series are
focused on linear correlation metrics. In this work, we propose a multidimensional framework to extract multiple
descriptors of the dynamic interaction among BOLD signals in their phase space. A set of metrics is extracted from
the cross recurrence plots of each couple of signals to form a multilayer connectivity matrix in which each layer is
related to a specific complex dynamic phenomenon. The proposed framework is used to characterize functional
abnormalities during a working memory task in patients with schizophrenia. Some topological descriptors are
then extracted from both multilayer connectivity matrices and the most used Pearson-based connectivity net-
works to perform a binary classification task of normal controls and patients. The results show that the proposed
connectivity model outperforms the statistical correlation-based connectivity in accuracy, sensitivity and speci-
ficity. Moreover, the statistical analysis of the selected features highlights that several dynamic metrics could
better identify disease-related dynamic states in brain activity than the statistical correlation among physiological
signals.

1. Introduction

Physiological and biological systems involve complex processes whose
dynamics exhibit nonlinear interactions (Deisboeck and Kresh, 2007). In
particular, the complexity of the brain arises from different aspects.

In recent decades, scientists have tried to incorporate the dense
network of relationships and mechanisms of large-scale synchronization
that are the basis of the functioning of neuronal networks by using the
complex network framework (Sporns, 2010). The network formulation
describes the brain as a graph composed by nodes (i.e., brain regions)
linked by edges (their functional connectivity) (Bullmore and Sporns,
2009; Sporns, 2010, 2011). Neuroimaging techniques have been

extensively applied to investigate the macroscale functional organization
of the human brain (Fornito et al., 2016). Many functional connectivity
(FC) analysis techniques have been proposed to uncover different dy-
namic neural mechanisms such as communication, information pro-
cessing and neural integration from functional magnetic resonance
imaging (fMRI) scans (Sporns et al., 2005).

The functional connectome indicates the complete map of the func-
tional links among all the regions of interest in which the total brain is
partitioned. Such connections usually quantify the statistical similarity
between the time series at each pair of regions, i.e., the functional con-
nectivity (Bullmore and Bassett, 2011). Although the high spatial reso-
lution of the fMRI data allows a detailed mapping of the connections, the
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Public	
  large-­‐scale	
  valida?on	
  studies	
  
Segmentation and classification results can be exploited to design computer 
aided detection systems. 
 
The lack of an unbiased comparison among different studies has motivated in 
recent years a number of international challenges have been promoted to 
compare algorithms and methodologies within a common framework.  
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The	
  overcoming	
  of	
  paradigm	
  ‘one	
  drug	
  fits	
  for	
  all’	
  	
  

La medicina di precisione è una delle 
applicazioni dell’era post-genomica. 

Oggi è possibile, usando analisi molecolari del 
genoma di ogni paziente, dividere i pazienti 
(stratificare) in sottogruppi: 
quelli che rispondono al trattamento o che non 
rispondono, oppure quelli per i quali il trattamento 
è tossico o ben tollerato.

La medicina di precisione

Le applicazioni della genomica funzionale 

Un singolo genoma di una persona occupa oltre 4GByte di memoria: ecco perché i Big 
Data trovano nelle Scienze della Vita la più significativa applicazione.

In campi come l’oncologia, 
l’Alzheimer, 
l’artrite e il diabete, ad oggi la 
percentuale dei pazienti 
per i quali un determinato 
farmaco è efficace 
può variare dal 25% al 60% 
a secondo della patologia e della 
terapia assegnata. 

La medicina di precisione

L’efficacia dei farmaci 
non è uguale per tuttiIn	
   fields	
   l ike	
   oncology,	
  

Alzheimer's,	
  
arthri$s	
  and	
  diabetes,	
  to	
  date	
  
the	
  percentage	
  of	
  pa$ents	
  for	
  
whom	
   a	
   certain	
   drug	
   is	
  
effec$ve	
  
can	
  vary	
  from	
  25%	
  to	
  60%	
  
depending	
   on	
   the	
   pathology	
  
and	
  therapy	
  assigned.	
  

	
  Now	
  it	
  is	
  possible,	
  using	
  
molecular	
  analysis	
  of	
  the	
  
genome	
  of	
  each	
  pa$ent,	
  to	
  
divide	
  the	
  pa$ents	
  (stra$fy)	
  
into	
  subgroups:	
  
those	
  that	
  respond	
  to	
  the	
  
treatment	
  or	
  that	
  do	
  not	
  
respond,	
  or	
  those	
  for	
  which	
  
the	
  treatment	
  is	
  toxic	
  or	
  well	
  
tolerated.	
  



Conclusions	
  

•  Ar?ficial	
  Intelligence	
  is	
  here	
  to	
  stay	
  

•  	
  Cross	
  area	
  collabora?on	
  is	
  essen?al	
  

•  Data	
  crea?on	
  and	
  sharing	
  is	
  a	
  cornerstone	
  for	
  
the	
   success	
   of	
   Ar?ficial	
   Intelligence	
   in	
  
healthcare	
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  RECAS	
  compu?ng	
  infrastructure	
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INFN	
   -­‐	
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   a	
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  floor.	
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