Esperimenti con SPARC: lasing e seeding

L. Giannessi ENEA – C.R. Frascati On behalf of the SPARC collaboration

Frascati, 19/2/2008

• Why seeding an FEL amplifier

- Seeding experiments
 - Seeding with high harmonics generated in gas
 - The harmonic cascade
 - The fresh bunch injection technique
- Self seeding

Longitudinal coherence

• The radiation "slips" over the electrons for a distance $N\lambda_0$

• SPARC:

- N ~ 500
- $\lambda_0 \sim 500 \text{ nm}$
- $N\lambda_0 \sim 250 \ \mu m$

Bunch length ~ 2.6 - 2.8 ps (rms) \rightarrow 7-8 independent regions

(the gain process increases this number) Luca Giannessi LIFE meeting Frascati, 19/2/2008

Phase space at saturation

SPARC spectra (18.02.2009 ... or 19.02.2009 ??)

Seeded FEL – Phase space @ exit of modulator

Higher order harmonics: A close look at the bunching process

Optical klystron operating on a higher order harmonic in the second section

I.Boscolo, V. Stagno, Il Nuovo Cimento 58, 271 (1980) ... and several other authors

Seeding with high order harmonics generated in gas

Riken 16mJ 10µJ Xe. 100MW Peak Power (50fs pulse)10MWMW100kW Ar Energy / pulse μJ Riken 16mJ Saclay : $E_1 = 25 mJ$ Riken 130mJ 100nJ MW Ne 10nJ LOA 2mJ nJ 80 40 λ (nm)

★ KrF Hanover 14mJ 500fs

Seeding with HHG generated in gas

Simple model of an HHG pulse

$$E(t) = a(z - ct)e^{i(\omega t - kz)} \qquad \omega = \frac{2\pi c}{\lambda}, \quad \lambda = 114$$
nm

 $\sigma_L = 30 fs$ $\sigma_s = 100 as$ Phase shift between different peaks

 $a(z) = |a(z)| \exp(i\phi(z))$ $\phi(z) = \sum_{k} s_{j} \sin(kz) + c_{j} \cos(kz)$

Seeded SPARC Layout

* EURO FEL

+ MUR

Harmonic Cascaded FEL

Example with *Sparc* undulator/beam parameters 1D *Perseo* simulation (*http://www.perseo.enea.it*)

Double stage FEL cascade

Double stage cascade

AFTER THE DISPERSIVE SECTION

Fresh Bunch injection technique

Double stage cascade

Self seeding: Regenerative amplifier

Luca Giannessi LIFE meeting Frascati, 19/2/2008

Simulation parameters

Electron beam

Beam Energy	175 MeV
Beam Energy spread	4 10-4
Beam Emittance	1.1
Peak current	100

Undulator

Period	2.8 cm
Strength (K)	1.8
Periods/Module	75
Modules	6
Average Twiss β	1.8 m

Radiation

Central wavelength	312.7 nm	
Injection coupling	10-3	
Filter width (relative)	10-4	
Luca Giannessi LiFE meeting		
Frascati,	19/2/2008	

Laboratory for UV and X-ray Optical Research

Entrance slit:

- minimum aperture 20 mm,
- maximum aperture 2 mm
- Entrance/exit arms: ≈1 m
- Three gratings:
 - 600 gr/mm, 150-550 nm
 - 1200 gr/mm, 100-350 nm
 - 2400 gr/mm, 50-150 nm
- Acceptance
 - 25 mrad × 25 mrad (1.4 deg × 1.4 deg)
- CCD detector (Roper Scientific)
 - Thinned and back illuminated
 - Pixel size 20 mm
 - 1340 × 1340 pixel
- Resolving element
 - 0.034 nm/pixel (600 gr/mm)
 - 0.017 nm/pixel (1200 gr/mm)
 - 0.0084 nm/pixel (2400 gr/mma)

5m McPherson HiRes UV-VUV monochromator

Available for spectroscopy and photon diagnostics from SRS-Daresbury, beamline 3.2 2 concave gratings, 300 - 2500 Å, resolution < 0.05 Å ref. Holland, NIM B 44 (1989) 233-241

Collaborazioni

CEA/SOLEIL Seeding e generazione armoniche in gas
Luxor Spettrometro VUV
UCLA Diagnostiche ottiche (FROG UV)
ST – short period undulators & Fresh bunch technique experiment
Spettrometro 5m Daresbury ?

Conclusions and perspectives

SPARC is an ideal test bench for single pass FEL physics

- Compatibility of Ti:Sa Harmonics generated in gas with FEL gain filtering & cascades
- Pulse evolution in a FEL amplifier
- Fresh Bunch Injection Technique (full double stage cascade)
- Superradiance and superradiant cascade
- Test of harmonic cascade concept
- Demonstrate VUV wavelength generation with a "low energy" electron beam

SPARC is a great opportunity