Models with isotropic Lorentz Invariance Violation and tests with Neutrinos and at JUNO

V. Antonelli, L. Miramonti, M.D.C. Torri

INFN Sezione di Milano e Dipartimento di Fisica, UNIMI

JUNO Italy meeting, Ferrara, May $16^{th} - 17^{th}$ 2019

Plan of the talk

Introduction.

Dispersion relations and possibility of Lorentz Invariance Violation (LIV)

- LIV in literature and peculiarity of our model
 - Geometrical and kinematic origin of LIV
 - Isotropy and internal symmetries preservation
 - Standard Model extension with isotropic LIV
 - See also V. Antonelli, L. Miramonti, M.D.C. Torri, Eur.Phys.J. C78 (2018) no.8, 667 and a 2nd

paper that will appear soon

- Neutrino Oscillation Probability in presence of LIV
- Basis for a phenomenological analysis: interesting cases
- LIV@JUNO?

Connection with the study of atmospheric neutrinos $= \circ \circ \circ \circ$

Introduction:

motivations for Lorentz invariance symmetry tests

- Impossible to test space time structure up to Planck scale (looking for possible quantum gravity effects).
- Partial anomalies in ultrahigh E cosmic rays (possible GZK sphere dilatation)
- Theoretical hypothesis of Lorentz invariance as effective low E simmetry, violated at high E by quantum effects: LIV with small deviations from "standard scenario"
- ► LIV hypothesis in neutrino (ν) physics since '99 (Coleman-Glashow).
 → Possible "Exotic scenarios" (perturbation effects for ultraluminal ν, mass generation in "modified relativity framework", etc.).

Revival of interest after recent IceCube discovery of ultra-high energy neutrino emission from blazar TXS 0506+056.

In our model LIV simple tiny "perturbative" corrections to the standard oscillation pattern.

Our geometrical model: from MDR to isotropic LIV

• Kinematic origin for LIV

Modified Dispersion Relations (MDR) (\neq for \neq particle species):

$$E_i^2 - |\overrightarrow{p}|^2 (1 - f_i(p_i)) = m_i^2$$

Every lepton feels \neq space-time local foliation, parametrized by its momentum (energy). Possible in (Finsler geometry).

• Choice of the model

LIV represented by homogenous functions $f\left(\frac{|\overrightarrow{p}|}{E}\right)$ and $g\left(\frac{\overrightarrow{p}}{E}\right)$ $E^2 - \left(1 - f\left(\frac{|\overrightarrow{p}|}{E}\right) - g\left(\frac{\overrightarrow{p}}{E}\right)\right) |\overrightarrow{p}|^2 = m^2 \implies$ a metric structure preserved: $\widetilde{g}(p)^{\mu\nu}p_{\mu}p_{\nu} = m^2$

• Choice: preserve space-time isotropy: $g\left(\frac{\vec{p}}{E}\right) = 0$. $\lim_{|\vec{p}|\to\infty} f\left(\frac{|\vec{p}|}{E}\right) = f(1+\delta) = \epsilon$ with $\delta, \epsilon << 1$. Every massive particle i has its own max attainable velocity $\neq c$ $v_{i,\text{limit}} = \lim_{|\vec{p}|\to\infty} \sqrt{1 - f_i(p_i)} \to 1 - \frac{\epsilon}{2}$

Metric structure of the theory

Modified Dispersion Relation written as: $\tilde{g}(p)^{\mu\nu}p_{\mu}p_{\nu}=m^2$, with

$$ilde{g}(p)^{\mu
u} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & -\left(1-f\left(rac{|ec{p}|}{E}
ight)
ight) & 0 & 0 \ 0 & 0 & -\left(1-f\left(rac{|ec{p}|}{E}
ight)
ight) & 0 \ 0 & 0 & 0 & -\left(1-f\left(rac{|ec{p}|}{E}
ight)
ight) & 0 \ 0 & 0 & 0 & -\left(1-f\left(rac{|ec{p}|}{E}
ight)
ight) \end{pmatrix}$$

- Modified Lorentz transformations (isometries of MDR).
- Redefinition of "modified" Dirac γ matrices (Γ) and "modified" spinorial wave functions (ψ) in presence of our LIV corrections. The LIV corrections to wave functions and γ matrices compensate each other.
- The gauge bosons remain Lorentz invariant.

LIV Standard Model Extension

 LIV corrections in our model modify the massive particle propagation, even ν, but the structure of currents and gauge internal symmetries (SU(3) × SU(2) × U(1)) is preserved. (Generalization of the Coleman Mandula theorem).
 e. g., the kinetic and interaction part for the leptons becomes: *L*_{lept} = √[det[g^f])] (ψ^f_L(iΓ^μD_μ)ψ^f_L + f^R(iΓ^μD_μ)f_R) , where f = e, μ, τ; ψ^f_L is the left handed isospin doublet of the fermion fields of flavour f and D_μ = ∂_μ - ig^{-τj}/₂ W_{μj} - ig^{-τj}/₂ B_μ is the usual SU(2) × U(1) covariant derivative. "Modified Minimal Extension" of Standard Model, in presence of isotropic LIV.

(V. Antonelli, L. Miramonti, M.D.C. Torri, EPJC 78 (2018) no.8, 667 + another paper.)

- 2 equivalent ways to study LIV impact on ν phenomenology:
 - Hamiltionian approach (perturbation theory formalism), or
 - starting, as usual, from the oscillation probability derived by evolution operator and ν unitary mixing matrix.

Oscillation probability in presence of LIV

- ► In presence of MDR: $E^2 = \left(1 f\left(\frac{|\vec{p}|}{E}\right)\right) |\vec{p}|^2 + m^2$ using the ultrarelativistic approximation, one gets: $|\vec{p}| \simeq E\left(1 - \frac{1}{2}f\left(\frac{|\vec{p}|}{E}\right)\right) + \frac{m^2}{2E}$
- Given the oscillation probability (from flavor ν_{α} to ν_{β}):

$$\begin{split} P(\nu_{\alpha} \to \nu_{\beta}) = &\delta_{\alpha\beta} - 4 \sum_{i>j} \mathfrak{Re} \left(U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \sin^2(\Delta \phi_{ij}) \right) + \\ &+ 2 \sum_{i>j} \mathfrak{Im} \left(U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \sin^2(\Delta \phi_{ij}) \right) \end{split}$$

LIV corrections (CPT even) modify "phase differences":

$$\Delta \phi_{kj} = \frac{\Delta m_{kj}^2 L}{2E} - \frac{f_k - f_j}{2} LE,$$

 f_i , f_k LIV coefficients for the i and k mass eigenstates of ν .

P_{α,β} modified only if LIV ≠ for ≠ mass eigenstates (δf_{kj} ≠ 0);
 LIV corrections proportional to LE → only tiny deviations from standard oscillation pattern

Basis for a phenomenological analysis: First examples

Oscillation probabilities ($P_{\nu_{\mu},\nu_{e}}$, $P_{\nu_{\mu},\nu_{\tau}}$ and $P_{\nu_{\tau},\nu_{e}}$) in "standard theory" (red) and with LIV (blue), for $E_{\nu} = 1 \text{ GeV}$ and $\delta f_{32} = \delta f_{21} = 1 \times 10^{-23}$.

Oscillation probability analysis: comparison with SK

From SuperK analysis: δf_{kj} reduced, but still room for interesting analysis. Examples for $\delta f_{32} = \delta f_{21} = 4.5 \times 10^{-27}$ and $E_{\nu} = 100 GeV$.

Oscillation probabilities: LIV impact on atmospheric ν

Phenomenological analysis

- For a complete analysis, in addition to the oscillation probability consider also neutrino flux Φ(L, E) and cross section σ(E). Number of N_{α,β} of detected transition events from ν_α to ν_β: N_{α,β} ∝ Φ_α(L, E) P_{να,νβ}(L, E) σ_β(E). Possible integration over E (and eventually the baseline), convoluted with detector resolution and efficiency.
- Possibilities for neutrinos of high energies. Examples:
 - E from TeV to PeV @ neutrino telescopes (ANTARES, KM3NET and IceCube)
 - Ultra high E cosmic neutrinos (i.e. E > EeV neutrinos investigated by Auger)

...and WHAT ABOUT JUNO ?

LIV and ν oscillations@JUNO

Challenging task but ...

What do we need?

- Observation of atmospheric ν of medium and high energies: multi-GeV region (ideally reaching $E \simeq 100 GeV$).
- Flux reduction only partially compensated by the increase of the cross section interaction.

LIV and ν oscillations@JUNO

What we would like to have?

- ▶ Flavor identification (ν_e, ν_μ and ν_τ)
- Reconstruction of the event energy.
- Good background knowledge and rejection (mainly muons simulating ν_μ induced events.)

Ideas and challenges

(see also Giulio's talk and G. Settanta, S.M. Mari, C. Martellini, P. Montini, arXiv:1901.10340)

- Scintillation light alone is not enough.
- ► Idea. Use:

- 1st PMT hits to reconstruct Cerenkov emission (information on lepton direction): works only partially (mainly for high energy through going events)

- time profile of the signal for flavor identification.

At high E, ν_{μ} and ν_{e} generated events different ranges \rightarrow different light distributions. Larger time profiles expected for muons;

- scintillation light for calorimetric information (total E of the event).

Ideas and challenges

- Energy reconstruction could be problematic for higher E events.
 - Higher E ν_{μ} -generated events (above $\simeq 7 GeV$) will pass through the detector (needed clever E classification for up-going through passing events;)

- For contained high E ν_e -generated events there could be problem of Large PMT saturation (presumably around 10-20 GeV).

- Idea: for higher E events possibility of using small PMT, which should not have saturation problem (even if they have a worst resolution).
- Some disadvantages, but also advantages:
 - very good E resolution;
 - good knowledge of the background.

Last developments and future perspectives

Roma 3 group developed a first discrimination algorithm for different reaction channels to reconstruct atmospheric neutrino signal, discriminating the "flavour" of ν generating the event. Their work to extend the analysis to higher energies is going on.
We have at disposal the full unoscillated ν flux simulation (Honda).

• Idea to develop: start from the flux, convoluting the different oscillation probability (and all the other factors) to make a 1^st evaluation of the statistics available in the region of interest and of the impact of LIV corrections.

LIV and $\nu \mbox{ oscillations@JUNO}$

Challenging task but... probably also interesting opportunity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Oscillation probabilities: LIV impact

% variations induced by LIV.
$$E_{\nu} = 100 \text{GeV} \text{ and } \delta f_{32} = \delta f_{21} = 4.5 \times 10^{-27}$$
. Plots of $2\frac{|P_{LIV} - P_{NO-LIV}|}{P_{LIV} + P_{NO-LIV}} \times 100$. $P_{\nu_e,\nu_{\mu}}$ (blue), $P_{\nu_{\mu},\nu_{\tau}}$ (violet) and $P_{\nu_e,\nu_{\tau}}$ (green).

