

# Radioactive background measurements @ MIB

#### JUNO-Italia meeting Ferrara, 9-10 maggio 2019



Monica Sisti for the Milano-Bicocca group



#### **ACRYLIC RADIOPURITY**



• We received from our Chinese colleagues few panels from Donchamp at different steps of the production process:



JUNO-Italia, May 9-10, 2019



- All panels we received have been polished on the surfaces.
- We decided to start the measurements of the samples from the last step (#8). Then we measured the others.



JUNO-Italia, May 9-10, 2019

Monica Sisti – Background update



· We have brought the pieces to the usual company for laser cutting



• The small cylinders are the samples used for neutron irradiation: they are cut at the level of the bonding among different panels of step #8 (Donchamp panel n.3)













• The small cylinders are the samples used for neutron irradiation: they are cut at the level of the bonding among different panels of step #8 (Donchamp panel n.3)



 Samples have been prepared for the neutron irradiation in clean room: they have been washed in Ultrasonic bath with demineralized water. Sample containers have been cleaned with nitric acid.



JUNO-Italia, May 9-10, 2019

Monica Sisti – Background update

# <sup>40</sup>K: Neutron Activation Analysis results



| JUNO request:               | <sup>40</sup> K – pre | <sup>40</sup> K – post |                        |
|-----------------------------|-----------------------|------------------------|------------------------|
| < 1E-12 g/g                 | [1E-12 g/g]           | [1E-12 g/g]            |                        |
| PANEL 1 (step2) – sample E3 | 0.37 ± 0.05           | < 0.16                 | ▼<br>after             |
| PANEL 2 (step5) – sample E3 | 0.39 ± 0.12           |                        | removing<br>some       |
| PANEL 2 (step5) – sample E1 | 0.21 ± 0.04           | < 0.016                | thickness<br>from the  |
| PANEL 3 (step8) – sample E1 | 2.66 ± 0.34           | 1.27 ± 0.13            | surface<br>(~1g total) |
| PANEL 3 (step8) – sample E3 | 3.60 ± 0.33           | 2.15 ± 0.49            |                        |
| PANEL 3 (step8) – sample E4 | 1.23 ± 0.11           |                        |                        |
| PANEL 4 (step8) – sample E3 | 1.01 ± 0.12           |                        |                        |

#### mass of each sample ~ 8g

JUNO-Italia, May 9-10, 2019

Monica Sisti – Background update

#### <sup>40</sup>K: Neutron Activation Analysis results

- JUNO
- A small <sup>40</sup>K contamination is present in all samples. However, in panels 1 and 2 it seems to be only on the <u>surface</u> of the panel (and smaller than the radiopurity request for JUNO).
- On the other hand, it looks like the process of bonding two or more panels adds <sup>40</sup>K to the Acrylic sample, in the <u>bulk</u> of the sample. This is true for both bonding along the side or along the thickness.



• There seems to be also a slight dependence of the <sup>40</sup>K contamination on the position of the sample within the panel.

#### <sup>232</sup>Th and <sup>238</sup>U: Neutron Activation Analysis results



|                                             | limits @ 90      | limits @ 90% C.L. |  |  |  |
|---------------------------------------------|------------------|-------------------|--|--|--|
| <pre>JUNO request:<br/>&lt; 1F-12 a/a</pre> | <sup>238</sup> U | <sup>232</sup> Th |  |  |  |
|                                             | [1E-12 g/g]      | [1E-12 g/g]       |  |  |  |
| PANEL 1 (step2) – sample E3                 | < 1.4*           | < 2.5*            |  |  |  |
| PANEL 2 (step5) – sample E1                 | < 0.31*          | < 0.49*           |  |  |  |
| PANEL 3 (step8) – sample E5                 | < 1.4            | < 1.4             |  |  |  |
| PANEL 4 (step8) – sample E3                 | < 1.3            |                   |  |  |  |
| mass of each sample ~ 8g                    | *after surf      | face removal      |  |  |  |

No <sup>238</sup>U and <sup>232</sup>Th contaminations are found in all production steps

this time we could use a more sensitive HPGe

JUNO-Italia, May 9-10, 2019



#### **Conclusions**

- Donchamp Acrylic seems compliant with JUNO requests, apart from a <sup>40</sup>K contamination that is critical after the process of bonding two or more panels.
- A check on the <sup>226</sup>Ra contamination (that was found on the first screening panels) must be done: ad hoc samples should be prepared together with CD group.
- More investigations can be done in the next months to control the mass production.

#### **ACRYLIC SURFACE**

#### **Acrylic samples for alpha measurements**





Layer 5: one surface is been polished and the other not

#### **Silicon Barrier Detectors**

- Silicon detector
- Low-Bkg
- 900mm<sup>2</sup>

Sentitivity:  $10^{-7} - 10^{-8}$ Bq/cm<sup>2</sup>







JUNO-Italia, May 9-10, 2019

Monica Sisti – Background update

#### **Alpha measurement results**



|           | Surface Polished                       |                                       | Intermedia                             | te Surface                            | Surface not Polished                   |                                       |
|-----------|----------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|
| Thickness | <sup>232</sup> Th[Bq/cm <sup>2</sup> ] | <sup>238</sup> U[Bq/cm <sup>2</sup> ] | <sup>232</sup> Th[Bq/cm <sup>2</sup> ] | <sup>238</sup> U[Bq/cm <sup>2</sup> ] | <sup>232</sup> Th[Bq/cm <sup>2</sup> ] | <sup>238</sup> U[Bq/cm <sup>2</sup> ] |
| 10nm      | <2.10-7                                | <3.10-7                               | <6.10-7                                | <5.10-7                               | <8.10-7                                | <8.10-7                               |
| 100nm     | <3.10-8                                | <1.10-7                               | <5.10-8                                | <3.10-7                               | <8.10-8                                | <4.10-7                               |
| 1um       | <2.10-7                                | <2.10-7                               | <4.10-7                                | <3.10-7                               | <6.10-7                                | <4.10-7                               |
| 10um      | <6.10-7                                | <1.10-6                               | <1·10 <sup>-6</sup>                    | <2.10-6                               | <2.10-6                                | <3.10-6                               |
| 100um     | <6.10-6                                | <1·10 <sup>-5</sup>                   | <1.10-5                                | <2.10-5                               | <1.10-5                                | <3.10-5                               |

CL. 90%

JUNO

#### Results for all samples are compatible with the detector background

#### **SIMULATION WORK**

#### AGREED ACTIVITY FOR JUNO RADIOACTIVITY MONTE CARLO VALIDATION



Each group developing MC codes for JUNO background evaluation should run the same set of simulations for a comparison of the results under the same conditions.



- \* 1E5 parent decays of 232Th, 238U, 210Pb and 40K
- \* Contaminated volume: all LAB
- \* Detecting volume: all LAB (no fiducial volume cut)
- \* No energy resolution applied
- \* Alpha quenching applied
- \* Energy range of output spectra: [0, 14 MeV], 10 keV/bin
- \* Correlated times: 1 ps to simulate no-correlated-time
- \* Total event rate: 1 Hz

STEP 1.a

\* The surrounding universe is water





In the next slides all simulations are done with:

1 ps correlated time:

simulated parent decays: 1×10<sup>5</sup>

and the following version of Geant4: g4.10.04.p02



(unless otherwise stated...)

**Old simulation**: Geant4 g4.9.6.p03, QF calculated at the end **New simulation**: Geant4 g4.10.04.p02, QF calculated step-by-step

JUNO-Italia, May 9-10, 2019









|                   | MC NO-QU      | ENCHING | MC QUENCHING   |       |           | CALCUL | ATED     |       |                |
|-------------------|---------------|---------|----------------|-------|-----------|--------|----------|-------|----------------|
|                   | Q_value       | Alpha   | <b>Q_value</b> | DE    | quenching | Alpha  | Q_value  | Alpha |                |
| Isotope           | (keV)         | (ke∨)   | (keV)          | (keV) |           | (keV)  | (ke∨)    | (ke∨) | Opz -j in Arby |
| 210Pb-chain       |               |         |                |       |           |        |          |       |                |
| 210Po             | 5407          |         | 662            | 34    | 12.2%     |        | 440.7072 |       | not specified  |
| 210Po             | 5407          |         | 662            | 34    | 12.2%     |        | 440.7072 |       | -j 0.01        |
| 210Po             | 5407          |         | 662            | 34    | 12.2%     |        | 440.7072 |       | -j 1           |
| 210Po             | 5407          |         | 662            | 34    | 12.2%     |        | 440.7072 |       | -j 2           |
| 210Po             | 5407          |         | 662            | 34    | 12.2%     |        | 440.7072 |       | -j 2.5         |
| 210Po             | 5407          |         | 589            | 31    | 10.9%     |        | 440.7072 |       | -j 3           |
| 210Po             | 5407          |         | 546            | 28    | 10.1%     |        | 440.7072 |       | -j 3.25        |
| 210P0             | 5407          |         | 510            | 24    | 9.4%      |        | 440.7072 |       | -j 3.5         |
| 210Po             | 5407          |         | 484            | 20    | 8.9%      |        | 440.7072 |       | -j 3.75        |
| 210Po             | 5407          |         | 465            | 18    | 8.6%      |        | 440.7072 |       | -j 4           |
| 210Po             | 5407          |         | 451            | 4*    | 8.3%      |        | 440.7072 |       | -j 5           |
| 210Po             | 5407          |         | 451            | 4*    | 8.3%      |        | 440.7072 |       | -j 7           |
| 210Po             | 5407          |         | 451            | 4*    | 8.3%      |        | 440.7072 |       | -j 10          |
| 210Po             | 5407          |         | 451            | 4*    | 8.3%      |        | 440.7072 |       | -j 50          |
| 210Po             | 5407          |         | 451            | 4*    | 8.3%      |        | 440.7072 |       | -j 100         |
|                   |               |         |                |       |           |        |          |       |                |
| *not a gaussian p | eak but a sha | rp one  |                |       |           |        |          |       |                |
|                   |               |         |                |       |           |        |          |       |                |

# The threshold for secondary electron production that makes the <sup>210</sup>Po peak position matching SNIPER <sup>210</sup>Po peak position is 1.421 keV

JUNO-Italia, May 9-10, 2019

#### Arby simulation: <sup>238</sup>U in whole LAB with quenching and secondary e- threshold = 1.421 keV



#### Arby simulation: <sup>238</sup>U in whole LAB with quenching and secondary e- threshold = 1.421 keV

|         | Nominal Energy |       | MC QUENCHING -j 3.25 |       |           |  |
|---------|----------------|-------|----------------------|-------|-----------|--|
|         | Q_value        | Alpha | Q_value              | DE    | quenching |  |
| Isotope | (keV)          | (keV) | (keV)                | (keV) |           |  |
| U-chain |                |       |                      |       |           |  |
| 238U    | 4270           | 4151  | 362                  | 18    | 8.7%      |  |
| 238U    |                | 4198  |                      |       |           |  |
| 234U    | 4860           | 4722  | 447                  | 28    | 9.5%      |  |
| 234U    |                | 4775  |                      |       |           |  |
| 230Th   | 4770           | 4620  | 397                  | 15    | 8.6%      |  |
| 230Th   |                | 4687  |                      |       |           |  |
| 226Ra   | 4871           | 4784  | 485                  | 23    | 10.1%     |  |
| 226Ra   |                | 4601  |                      |       |           |  |
| 222Rn   | 5590           | 5489  | 573                  | 28    | 10.4%     |  |
| 218Po   | 6115           | 6002  | 667                  | 33    | 11.1%     |  |
| 214Po   | 7833           | 7687  | 1012                 | 46    | 13.2%     |  |
| 210Po   | 5407           | 5304  | 547                  | 28    | 10.3%     |  |
|         |                |       |                      |       |           |  |

#### **SNIPER** simulation results

| isotope | No quenching | quenching    |           |      |
|---------|--------------|--------------|-----------|------|
| isotope | Q_value/KeV  | Q _value/KeV | quenching | FWHM |
| U238    | 4270         | 374          | 8.8%      | 12.4 |
| U234    | 4859         | 463          | 9.5%      | 22.7 |
| Th230   | 4770         | 408          | 8.6%      | 17.5 |
| Ra226   | 4871         | 491          | 10.1%     | 23.6 |
| Rn222   | 5590         | 581          | 10.4%     | 17.9 |
| Po218   | 6115         | 674          | 11.0%     | 16.9 |
| Po214   | 7830         | 1022         | 13.1%     | 20.9 |
| Po210   | 5407         | 548          | 10.1%     | 14.9 |

#### Arby simulation: <sup>232</sup>Th in whole LAB with quenching and secondary e- threshold = 1.421 keV



Fri Apr 12 18:14:50 2019

#### Arby simulation: <sup>232</sup>Th in whole LAB with quenching and secondary e- threshold = 1.421 keV

|          | MC NO-QUENCHING |       | MC             | MC QUENCHING |           |  |
|----------|-----------------|-------|----------------|--------------|-----------|--|
|          | Q_value         | Alpha | <b>Q_value</b> | DE           | quenching |  |
| Isotope  | (keV)           | (keV) | (keV)          | (keV)        |           |  |
| Th-chain |                 |       |                |              |           |  |
| 232Th    | 4083            |       | 338            | 16           | 8.3%      |  |
| 228Th    | 5521            |       | 385            | 16           | 7.0%      |  |
| 224Ra    | 5788            |       | 558            | 32           | 9.6%      |  |
| 220Rn    | 6405            |       | 718            | 36           | 11.2%     |  |
| 216Po    | 6907            |       | 819            | 40           | 11.9%     |  |
| 212Bi    | 6208            |       | 609            | 32           | 9.8%      |  |
| 212Po    | 8955            |       | 1263           | 55           | 14.1%     |  |

#### **SNIPER** simulation results

| isotope | No quenching | quenching    |           |      |
|---------|--------------|--------------|-----------|------|
| isotope | Q _value/KeV | Q _value/KeV | quenching | FWHM |
| Th232   | 4083         | 347          | 8.5%      | 12.5 |
| Th228   | 5520         | 389          | 7.0%      | 20.2 |
| Ra224   | 5789         | 569          | 9.8%      | 14   |
| Rn220   | 6405         | 726          | 11.3%     | 20.3 |
| Po216   | 6906         | 827          | 12.0%     | 17.9 |
| Bi212   | 6207         | 616          | 9.9%      | 16.3 |
| Po212   | 8954         | 1265         | 14.1%     | 25.5 |

#### CONCLUSIONS

Finally SNIPER and Arby results match!!!

Good news BUT: To obtain this I had to change the threshold for secondary electron production in Geant to 1.4 keV. What about this parameter in SNIPER? There is no obvious reason to me to have this threshold higher than the default one (990 eV). So why this?

Additional info:

We use Geant **without** scintillation option: I guess that is not the same in SNIPER. Could it be that some parameters set for the scintillation option influence the secondary particles threshold? Is it possible to know which parameters are changed from default value in SNIPER?

#### THE SAGA GOES ON...

#### Arby simulation: <sup>238</sup>U in whole LAB with quenching and secondary e- threshold = 1.421 keV



JUNO-Italia, May 9-10, 2019

Monica Sisti – Background update