

Sez. Milano-Bicocca

Development of detector for high sensitivity measurements on activated samples

Juno-Italia Meeting - Ferrara May 9-10, 2019

Speaker: Nastasi Massimiliano

Challenge: radiopurity measurements

Liquid Scintillator $^{238}U < 10^{-15} \text{ g/g}$ $^{232}Th < 10^{-15} \text{ g/g}$ $^{40}K < 10^{-15} \text{ g/g}$ Extremely demanding requirements for radiopurity

Neutron Activation Analisys

~**ppt level** of contamination (²³⁸U,²³²Th, ⁴⁰K)

NAA it's a good tool, but in order increase sensitivity, we need to combine Neutron Activation and high sensitivity measurement systems

Ge-Ge detector

GeSparK β-Y coincidence detector

Neutron Activation Analysis (NAA)

The neutron activation process consists in the production of unstable isotopes through neutrons absorption by the nuclei present in the sample

$${}^{A}_{Z}X + n \xrightarrow{\beta} {}^{A+1}_{Z+1}Y + \gamma_{cascade}$$

The NAA technique consists of several steps:

Sample **exposure** to a neutron flux

Extraction of the irradiated sample and measurement of induced Υ radioactivity (HPGe- detector) Calculation of the quantity of precursor element (^A_ZX)

Sensitivity depends on:

Interferences in the matrix

 \rightarrow

Background detector in the region of the gamma emission

Efficiency HPGe-detector

Care in the sample preparation is extremely important!

Development of **background reduction** techniques

Development high efficiency measurements system

Ge-Ge HPGe: y-y detector

2x GMX detector

Shielding:

20cm lead

15cm copper

- Coaxial detector (n-type)
- Relative efficiency: 100%
- Ultra Low Background configuration
- Low Threshold (20keV)

EndCap Roman Lead Electronic

Sample

Ge-Ge HPGe: Veto System

Anticoincidence technique

Plastic scintillator detector

Background suppression ~40%

Ge-Ge HPGe: y-y coincidence

NAA Acrylic – December 2018

Sample E1 of Panel n.1 (production step #2)

(See M. Sisti's talk for @mib results and Acrylic Panel references) Counts

Sample	E1 – L1
Irradiation	Dec2018
Channel	Lazy Susan
T irradiation	6 hours
Detector	Ge-Ge
T measurement	27d
Sample mass	8,22g
Waiting Time	3h

Samples have been prepared in clean room and container cleaned whit nitric acid

Limit @ 90% C.L.

Detector	⁴⁰ K [ppt] Pre	⁴⁰ K [ppt] Post	²³⁸ U [ppt]	²³² Th[ppt]
GMX	0,21±0,04	<0,016	<0,31	<0,49

We have achieved sensitivity <1ppt for acrylic material

to be in the **Acrylic bulk**

β-Y coincidence measurements on LAB activated samples

Ge-SparK: electronic chain

GeSparK: pulse shape discriminator

Juno-Italia Meeting - May 9-10, 2019 Ferrara

GeSparK: STD uranium

Juno-Italia Meeting - May 9-10, 2019 Ferrara

Irradiations – Distilled LAB after Al₂O₃ column

irradiation Three neutron campaigns of 6 hours on Distilled LAB sample

0	Distillated y
S	2016.11.07
T	-

Sample	LAB Distilled	LAB Distilled	LAB Distilled
Irradiation	1	2	3
Channel	Lazy Susan	Lazy Susan	Lazy Susan
T irradiation	6 hours	6 hours	6 hours
Detector	GeSparK	GeSparK	GeSparK
T meas	736h	552h	26d
Sample mass	6g	13g	28g
Container	PE	PE	Aluminum

 $A_{Z}X + n \xrightarrow{\beta} A^{+1}_{Z+1}Y$ cascade

GeSparK β - Υ coincidence

Polyethylene

Polyethylene

Irradiation #3

Aluminum

Distilled LAB

⁴⁰ K [ppt]	²³⁸ U [ppt]	²³² Th [ppt]
0,12±0,02	<0,7	<0,8

Limit @ 90% C.L.

A slight **40K contamination** is presente Distilled LAB

Presence of interferences are a limit for the sentivity on $^{\rm 238}{\rm U}$

For ²³²Th sensitivity is limited by cosmic muons

Screening of measurements on activated Raw and Al₂O₃ purified LAB samples

NAA on Raw and Al₂O₃ purified LAB

Three neutron irradiation campaigns of 6 hours

In each irradiation we have exposured at the flux of neutron a Raw and Al2O3 purified LAB sample

Irradiation #1 Irradiation #2 Irradiation #3

Polyethylene Polyethylene

Aluminum

HPGe detectors in low background configuration

GeGEM ϵ_{rel} 30%

BeGE detector ϵ_{rel} 50%

Summary

LAB Sample	⁴⁰ K[ppt]	²³⁸ U[ppt]	²³² Th[ppt]
Raw	<0,05	<4,8	<4,1
Al ₂ O ₃	0,19±0,03	<3,2	<4,0
Distilled	0,12±0,03	<0,7	<0,8

- A slight ⁴⁰K contamination is presente in Al₂O₃ and Distilled LAB
- Between step Al₂O₂ and Distilled the contamination of ⁴⁰K decrease

Next steps for β - Υ detector:

- Implement cosmic rays veto
- Optimize data analysis
- Increase sample mass in the next irradiation