

TAO DETECTOR SIMULATION

PAOLO MONTINI - ROMA TRE

TAO DETECTOR

TAO SIM. SOFTWARE

- Geant4 10.4 p02
- Gd-LS sphere 90 cm diameter
- 2 cm thick acrylic shell
- 1 cm thick LAB Buffer (non scintillating)
- Total surface ~ 10.9 m²

OPTICAL MODEL

- "Naive optical model"
- GdLS emission spectrum & att. len. Taken from Day Bay
- Use standard G4 scintillation
- No scintillation by particle type —> no psd (WIP)

BASIC DISTRIBUTIONS

1 MeV electron randomly distributed in the LS volume

SIPM GEOMETRY

- 4056 5x5 cm² SiPM tiles
- PDE ~ 45% @ 420 nm
- Coverage loss due to the gaps between the SiPM boards
- Need to optimize the arrangement on the sphere
- ~94% Coverage

DETECTOR RESPONSE & RESOLUTION

- "Calib. Source" in the detector center
- LY > 3900 PE/MeV
- Resolution ~ 1.6%/MeV

ENERGY LEAKAGE

- Investigate the spectral distortion due to the size of the detector
- Fiducial cut is needed

IBD SIGNAL

ENERGY RESOLUTION

- Add random noise to each channel
- Energy resolution depends on the SiPM dark noise
- Assuming a 500 ns integration time window Energy resol. Is ~ 2% @ 220 K

OCCUPANCY

- Number of photos seen by each 5*5 cm2 SiPM Tiles
- 10.000 1 MeV electrons randomly distributed in the Scintillator sphere

- Code is finally stable
- Basic distributions seem ok
- Need some optimization and improvements
 - More accurate optical model
 - Scintillation by particle type —> PSD
- Coordination with the Chinese colleague
- Deeper investigation on the SiPM occupancy
 - Electronics dynamic range
 - Trigger