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OUTLINE

The task

A simple approach with integral features
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Deep Neural Networks vs. Boosted Decision Trees
Dark Noise

Can we trust trained models?
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First results with NN: DocDB-3553


https://juno.ihep.ac.cn/cgi-bin/Dev_DocDB/ShowDocument?docid=3553

EVENT RECONSTRUCTION: THE TASK

Available information:
» charge at each PMT
> hit time at each PMT
» PMT positions

To be determined:

v

Visible energy

v

Vertex

v

Particle type
Inside / outside of FV

v

produced with ELAINA visualization software,
DocDB-4082
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https://juno.ihep.ac.cn/cgi-bin/Dev_DocDB/ShowDocument?docid=4082

MACHINE LEARNING FOR RECONSTRUCTION

» Easy to implement (very developed libraries available)

v

Able to describe systems of any complexity

<

Work fast

v

Input — — Qutput

v

One has to be careful with training data:
- MC data may be off from the reality
- Calibration data may be not enough

Hard to understand the internal behavior

v
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A SIMPLE APPROACH WITH INTEGRAL FEATURES

Input (features):

Np.e. total number of photo-electrons
1 Npmt 2, D€
Teer Zee  Charge center Nowrm > Zin}

tm mean first hit time (counted from the time of the first PMT hit)
Output (labels):

» First model: inside/outside FV
» Second model: energy
Dataset: positrons uniformly distributed in CD

1. FEy, : 0—10 MeV,
900k/100k — training/validation

2. Eyin :0,1,...,10 MeV,
11x10k — testing
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Two ML. APPROACHES

Boosted Decision Trees (BDT) Deep Neural Networks (DNN)
Alessandro Compagnucci, Padova Francesco Vidaich, Padova

Deep Neural Network

Hidden Layer 1 Hidden Layer2 Hidden Layer 3
Tensorfl

Which one is better?
Will they work?
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BDT RESULTS

LUEUSYS
{o] lo}
Model training and performance

Model performance

Models compared to 2~ (f/BEﬂ) +0.59472 + (22)?
obtained with other (tradltlonal) reconstruction algorithm
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DNN RESULTS

UNIVERSITA

Energy Reconstruction S Sroon
* Total energy seen by the PMTs: Egot = Ey + 1.022 MeV

* For each test dataset, we do a gaussian fit over predicted energies
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BDT RESULTS

LUEUSYS
o

Other applications

Dark noise

@ A training dataset with simulated Dark Noise from PMT is
provided.

@ As expected DN spoils the predictions significantly.

0.040
! ~~ Other rec. alg.
| I I with dark noise
0.035 T I 1 wthout dark noise
\
I
0.030 \F
\
f
: \
X 0025 * 3
~ H
N N
0.020 N I
i
N I
NE "
0.015 iy i 1
: Lo
el g i
e 3 S5
0010 : > Y 2
2 4 6 8 10 & <
Eis (Mev) s

9/15



DNN REesuLTs (WITH DARK NOISE)

UNIVERSITA

Dark Noise: Energy Reconstruction e

* Dark noise is generated as a thermal effect inside PMTs:
photoelectrons are produced by the PMT without a photon hit

* Models trained and tested on data affected by dark noise are still
working as expected, but sigma’s values are bigger
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ML MODELS ARE FAST ***

DNN BDT
Training (done once) ~ half an hour several minutes
Reconstruction (per 100k events)  ~ 2 seconds ~ 15 seconds

* Tested on regular laptops
** Can be speed up even more by simplifying DNN/BDT structure
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DATA FOR TRAINING

There are two options, neither is good enough:
1. MC data:

» Can be as large as needed
» May differ from the reality

2. Calibration data:
» Real
» Limited in terms of positions, energies and statistics

Possible strategy (proposed by Yu Xu):

Pre-train with MC — Train with 1/2 of Calibration data
— Test with the other 1/2 of Calibration data

This way we built an approximate model with simulated data and then
adjust it with real data. Afterwards we ensure it works.
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BDT NEED NOT MUCH DATA FOR TRAINING

LUEUSYS
ooe
Model training and performance

Model performance: smaller dataset

Training event density needed is found to be ~ 4 events/m?®
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TOWARDS VERTEX RECONSTRUCTION

WORK ONGOING:

Only integral features are not

enough for vertext reconstruc- » Input from each PMT
tion: (charge+time)
o » Projection to a 2D plane —
sl different options are being
tested

Rad_sigma (mm]

» Convolution neural networks
(CNN) — searching for a
working architecture

6
Total energy [MeV]

> Alternative: trying spherical
25 cm @ 1 MeV CNN (a very new technique)

Goal: 5—6cm @ 1 MeV
[ Ivan Provilkov, LAMBDA |
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SUMMARY

Energy Reconstruction
» Good energy resolution out of the box with DNN and BDT
> Very fast: 100k events dataset reconstructed in seconds
» Dark noise spoils energy resolution: DNN suffers less
» BDT can be reasonably trained with lower data
Vertex Reconstruction
» More inputs are needed
» Complex architecture — heavier computations
» Anyway it is expected to be faster than traditional methods
» Work ongoing
Both
» PMT TTS is to be considered

» A smart strategy is need for combined training with MC and
calibration data
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