

2 MeV detection threshold of ⁸B solar neutrinos with JUNO

Vito Antonelli(Milano U.), **Xuefeng Ding (GSSI & Milano U.),** Emanuela Meroni(Milano U.), Gioacchino Ranucci(Milano U.), Alessandra Re(Milano U.), Barbara Ricci(Ferrara), Giuseppe Salamanna(Roma TRE) (Italian Solar Neutrino working group)

> JUNO-Italia meeting @INFN-Ferrara, Italy 8–9 May 2019

Outline

G S S I

- Why low threshold ⁸B solar neutrinos?
- High precision measurements with Borexino
- Potential of JUNO
- Future: CNO solar neutrinos
- Conclusions

Neutrino oscillations in Matter

 Presence of matter (The Sun for solar neutrinos) adds potential to the evolution operator (Hamiltonian) and changes the flavor eigenstate and thus the mixing angle.

M. Maltoni and A. Yu. Smirnov, "Solar neutrinos and neutrino physics," *Eur. Phys. J. A*, vol. 52, no. 4, p. 87, Apr. 2016.

- Neutrino oscillation transition region not observed yet.
- 2σ Discrepancy between KamLAND and solar on $\Delta m_{21}{}^2$

High Precision Solar Neutrino Spectroscopy with Borexino and JUNO, Xuefeng Ding

Transition zone: criteria for new physics (M.M. Guzzo, P.C. de Holanda, O.L.G. Peres 2002)

A. Friedland, C. Lunardini, and C. Peña-Garay, "Solar neutrinos as probes of neutrino-matter interactions," *Phys. Lett. B*, vol. 594, no. 3–4, pp. 347–354, Aug. 2004. M. . Guzzo, P. . de Holanda, and O. L. . Peres, "Effects of non-standard neutrino interactions on MSW-LMA solution to the solar neutrino problem," *Phys. Lett. B*, vol. 591, no. 1–2, pp. 1–6, Jul. 2004.

Maltoni et al. Eur. Phys. J. A (2016) 52:87

* Can probe transition region.

- SuperK/BX: T 3—5 MeV E_v~7.4 MeV (almost outside the transition region). SuperK: high threshold. Borexino: too small.
- JUNO: T 2-3 MeV E_v~6.2 MeV (in the transition region) JUNO is big and can cut external backgrounds.

6

Signal and major backgrounds

Elastic scattering signals

 $\begin{array}{c} 14 \\ E_{vis}^{v} \left(MeV \right) \end{array}$

v(⁸B) Elastic scattering on e-

2 MeV detection threshold of ⁸B solar neutrinos with JUNO, Xuefeng Ding

S

G

INFN

- Based on X.Y. Li et al, 10.1088/1674-1137/40/2/026001
- Acrylic ball, PMT glass, Steel, Copper, Water, Rock

- Residual ext. γ extrapolated using exponential law
- S/B optimized to 100:1 => FV cut: r<14 m (ϵ_{FV} =49.48%)

• scale from data: power law

$$\frac{R_X^{JUNO}}{R_X^{\text{ref}}} = \frac{\left(E_{\mu}^{JUNO}\right)^{\alpha(X)}}{\left(E_{\mu}^{\text{ref}}\right)^{\alpha(X)}} \cdot \frac{\epsilon_C^{JUNO}}{\epsilon_C^{\text{ref}}} \cdot \frac{\rho^{JUNO}}{\rho^{\text{ref}}} \cdot \frac{R_{\mu}^{JUNO}}{R_{\mu}^{\text{ref}}} \cdot \frac{L_{\mu}^{JUNO}}{L_{\mu}^{\text{ref}}}$$

KamLAND 10.1103 / PhysRevC.81.025807. F. An et al. 10.1088/0954- 3899/43/3/030401 Borexino 10. 1088/1475-7516/2013/08/049

Experiment	E_{μ}	ϵ_{C}	ρ	R_{μ}	L_{μ}	m
Unit	GeV		g/cm ³	Hz	m	kton
JUNO	215	0.8792	0.856	3.0	23.6	20
KamLAND	260	0.8568	0.780	0.198	8.78	0.913
Borexino	283	0.9007	0.88	0.00965	4.0	0.0995

Cosmogenic backgrounds

Contribution to ROI (no cut)

Х	R_X^{tot} (day ⁻¹)	$R_X^{\rm ROI}$ (day ⁻¹)	
$^{8}B \nu ES$	90.55	13.23	
¹⁰ C	760.4	447.85	-
¹¹ Be	51.2	6.10	
^{16}N	13 ^a	0.39	_
⁶ He	1543	415.94	-
⁸ Li	560.2	37.38	
⁸ B	387.2	$\ll 0.01$	
⁹ Li	101.4	7.76	-
⁹ C	139.0	5.03	
⁸ He	31.83	3.62	-1)
¹² B	1968	112.17	(V)
^{13}B	12 ^a	1	<(1 k
^{12}N	81.34	1.21	1 × 11 ×
¹¹ C	$3.734 imes 10^4$	0	$\frac{1}{1}$ (d2
⁷ Be	543 ^{8a}	0	<u>Ab</u>
10 Be	1419 ^a	0	
others	$1.2 imes 10^{4a}$	0.10	
neutrons	1.2798×10^{5}	$1.2798 imes 10^5$	

 $5 \frac{6}{E_{vis}(MeV)}$

6 7

2 MeV detection threshold of 8B solar neutrinos with JUNO, Xuefeng Ding

4

3

2

20

8 9 10

- μ -associated n: $d_{n2\mu}$ <2 ms, whole det.
- Definition of TFC: d_{x2n} <2 m and t_{x2n} <111 s

G S

TFC: optimization of the cut

G S

S

INFN

KamLAND 10.1103/PhysRevC.84.035804

- atm/solar v bkg scale from KamLAND ⁸B solar v paper
- Reactor IBD/ES taken from MH analysis
- Will be negligible after cut

Contribution to ROI (no cut)

X	R_X^{tot} (day ⁻¹)	$R_X^{\rm ROI}$ (day ⁻¹)
$^{8}B \nu ES$	90.55	13.23
⁸ B CC 1	1.06	0.08
⁸ B CC 2	0.20	0.02
hep ES	0.11	0.01
atm ν ES	0.35	0.02
sum	1.72	0.13
Reactor \bar{v}_e IBD p	83	12.5
Reactor \bar{v}_e IBD d	83	83
Reactor $\bar{\nu}_e$ ES		0.1

💮 radioactivity: α/β disc. + coincidence 🔓

By rejecting ²¹²Bi—²¹²Po and ²¹⁴Bi—²¹⁴Po, we significantly reduce bkg. in ROI (2~3 MeV)

Summary of Signal and Backgrounds

Name	$R_X^{\rm tot}$	$R_X^{ m ROI}$	FV cut	IBD cut	μ veto	TFC veto	Acut
8 B ν ES	90.55	13.23	6.546	6.546	4.639	3.650	3.659
External γ s	3.333×10^{7}	$9.105 imes 10^5$	0.055	0.055	0.039	0.031	0.031
(α, n)	$\mathcal{O}(10)$	$\mathcal{O}(10)$	0	-	-	-	-
²³⁸ U	3009.26	132.35	65.50	0.519	0.368	0.291	0.291
²³² Th	656.28	24.44	12.10	12.10	8.58	6.76	0.102
¹⁰ C	760.4	447.85	221.69	221.69	186.05	0.033	0.033
¹¹ Be	51.2	6.10	3.02	3.02	2.46	0.046	0.046
^{16}N	13	0.39	0.39	0.39	0.26	0.013	0.013
⁶ He	1543	415.94	205.90	205.90	11.99	0.212	0.212
⁸ Li	560.2	37.38	18.50	18.50	1.22	0.026	0.026
⁸ B	387.2	$\ll 0.01$	о	-	-	-	-
⁹ C	139.0	5.03	2.49	2.49	0.023	0	-
^{12}B	1968	112.17	55.53	55.53	1.58	0.018	0.018
¹³ B	12	1	0.50	0.50	0	-	-
^{12}N	81.34	1.21	0.60	0.60	0.006	0	-
⁹ Li	101.4	7.76	3.84	0.30	0.003	0	-
⁸ He	31.83	3.62	1.79	0.14	0.001	0	-
Rea \bar{v}_e IBD p	83	12.5	6.19	0.14	0.099	0.078	0.078
Rea $\bar{\nu}_e$ IBD d	83	83	41	0.90	0.638	0.503	0.503
Rea \bar{v}_e ES		0.1	0.050	0.050	0.035	0.028	0.028
others	$3.2 imes10^4$	0.23	0.114	0.114	0.081	0.064	0.064
bkg sum	3×10^{7}	$9 imes 10^5$	639	523	213	8.102	1.444

S/B = 2.5

High Precision Solar Neutrino Spectroscopy with Borexino and JUNO, Xuefeng Ding

- ROI: Kinetic energy of electron *T* ~ [2, 3] MeV
- Average energy of contribution neutrinos: 6.18 MeV

G S S I

- Define ratio of avg Pee between JUNO and Super-K
- r>1: evidence of upturn

- $^{238}U \& ^{232}Th \sim 10^{-15} g/g: 1200 days$ to reach 3σ .
- However, the leakage mainly comes from tail of ²³⁸U.
 - A shape analysis or higher energy threshold can work.

2 MeV detection threshold of ⁸B solar neutrinos with JUNO, Xuefeng Ding

Conclusions

- JUNO can uniquely detect ⁸B solar neutrinos in the 2~3 MeV range (recoil electron energies). [Actually SNO can also do it..]
- S (3.6 per day) / B (1.4 per day) 2.5.
- This contribute to one data point at 6.2 MeV (neutrino energies) of neutrino survival probability. It's in the transition zone.
- JUNO can reject no-upturn hypothesis at 3σ within ~140 days.

Thanks

Dusk of L'Aquila

By Xuefeng Ding. All right reserved

External backgrounds: neutrons

- neutron capture γ can fall in ROI.
- neutron from (α,n) or Spontaneous Fission

Only Acrylic ball contribution considered (as major contribution)

 (α,n) rate estimated using NEUCBOT based on TALYS

Туре	²³⁸ U	²³⁵ U	²³² Th
Concentration (g/g)	10^{-11}	10^{-13}	10^{-11}
(α, n) rate (n/decay)	1.2×10^{-6}	$1.2 imes 10^{-6}$	$1.4 imes10^{-6}$
(α, n) n flux (per day)	7	0.5	3
SF rate $(n \cdot g^{-1} \cdot s^{-1})$	1.36×10^{-2}	$3 imes 10^{-4}$	$< 1.32 imes 10^{-7}$
SF n flux (per day)	7	< 0.1	< 0.1

Contribution to ROI (no cut)

Х	R_X^{tot} (day ⁻¹)	$R_X^{ m ROI}$ (day ⁻¹)
$^{8}B \nu ES$	90.55	13.23
(α, n)	$\mathcal{O}(10)$	$\mathcal{O}(10)$

• Based on F.P. An et al, 10.1088/0954-3899/43/3/030401

LS internal backgrounds

10⁻¹⁷ g/g ²³⁸U, ²³²Th (⁴⁰K, ²¹⁰Bi, ³⁹Ar, ⁸⁵Kr not contributing)

Contribution to ROI (no cut)

Х	R_X^{tot} (day ⁻¹)	$R_X^{\rm ROI}$ (day ⁻¹)
8 B ν ES	90.55	13.23
External γ s	3.333×10^{7}	$9.105 imes 10^5$

Cosmogenic: scaling MC

- MC are biased
- Naive correction

$$R_X^{\text{JUNO}} = R_X^{\text{JUNO}}(\text{MC}) \cdot \frac{R_X^{\text{BX}}(\text{data})}{R_X^{\text{BX}}(\text{MC})}$$

Borexino 10.1088/1475-7516/2013/08/049 Borexino **F**LUKA $3 \pm 19 \, \text{GeV} -$ **Isotopes** ield $[10^{-7} \, (\mu \, \text{g/cm}^2)^{-1}]$ ^{12}N 0.5 ± 0.2 < 1.1 $^{12}\mathbf{B}$ 56 ± 3 28.8 ± 1.9 8 He 0.30 ± 0.15 < 1.5⁹Li 3.1 ± 0.4 2.9 ± 0.3 $^{8}\mathbf{B}$ 6.6 ± 0.6 14 ± 6 6 He 17.3 ± 1.1 38 ± 15 ⁸Li 7 ± 7 28.8 ± 1.0 $^{9}\mathbf{C}$ 0.91 ± 0.10 < 16 11 Be 0.59 ± 0.12 < 7.0 $^{10}\mathbf{C}$ 18 ± 5 14.1 ± 0.7 $^{11}\mathbf{C}$ 467 ± 23 886 ± 115 **Neutrons** ield $[10^{-4} \, (\mu \, g/cm^2)^{-1}]$ 2.46 ± 0.12 3.10 ± 0.11

Cosmogenic backgrounds

• Results

Isotope	$R_{\rm scaled}^{\rm BX}$	$R_{\rm scaled}^{\rm KL}$	$R_{\rm scaled}^{\rm FL}$	$R_{\rm scaled}^{\rm G4}$	used
Unit	day ⁻¹	day^{-1}	day ⁻¹	day^{-1}	day ⁻¹
¹⁰ C	$(7 \pm 2) \times 10^2$	$(7.6 \pm 0.9) \times 10^2$	$(6.4 \pm 0.8) \times 10^2$	$(7.4\pm0.9) imes10^2$	760.4
¹¹ Be	$< 2.9 imes 10^2$	$(5.1\pm0.9) imes10$	$(5\pm2) imes10$	$(3\pm2) imes10$	51.2
^{16}N	-	-	-	-	13
⁶ He	$(1.6 \pm 0.6) \times 10^2$	-	$(1.2 \pm 0.5) \times 10^3$	$(7 \pm 4) \times 10^2$	1543
⁸ Li	$(3\pm3) imes10^2$	$(6\pm1) imes10^2$	$(4.5 \pm 1.0) \times 10^2$	$(2.6\pm0.6) imes10^2$	560.2
⁸ B	$(6 \pm 3) \times 10^2$	$(4\pm1) imes10^2$	$(3.2 \pm 1.0) \times 10^2$	$(4\pm2) imes10^2$	387.2
⁹ Li	$(1.2 \pm 0.2) \times 10^2$	$(1.02 \pm 0.09) imes 10^2$	$(7\pm2) imes10$	$(2.1\pm0.4) imes10^2$	101.4
⁹ C	$< 6.6 imes 10^{2}$	$(1.4\pm0.6) imes10^2$	$(1.1 \pm 0.5) \times 10^2$	$(3\pm2) imes10^2$	139.0
⁸ He	< 59	$(4\pm2) imes10$	$(2\pm3) imes10$	< 82	31.83
^{12}B	$(2.3\pm0.2) imes10^3$	$(2.0\pm0.2) imes10^3$	$(1.6 \pm 0.2) \times 10^3$	$(1.3\pm0.2) imes10^3$	1968
^{13}B	-	-	-	-	12
^{12}N	< 44	$(8\pm2) imes10$	$(6\pm4) imes10$	$(9\pm3) imes10$	81.34
¹¹ C	$(3.7 \pm 0.5) imes 10^4$	$(4.1\pm0.7) imes10^4$	$(3.1 \pm 0.5) imes 10^4$	$(2.5\pm0.4) imes10^4$	37344
⁷ Be	-	-	-	-	5438
10 Be	-	-	-	-	1419
neutron	$(1.28 \pm 0.05) \times 10^5$	$(1.3\pm0.2) imes10^5$	$(2.0 \pm 0.2) \times 10^5$	$(1.87 \pm 0.08) \times 10^5$	127975

2 MeV detection threshold of 8B solar neutrinos with JUNO, Xuefeng Ding

27 Signal and backgrounds

"TFC CAN removed **0-neutron-proc.** cosmogenic"

28

2 MeV detection threshold of ⁸B solar neutrinos with JUNO, Xuefeng Ding

bkg. reduction and eff. JUNO-European meeting@Finland 17–19 October 2018

INFŇ

Simulation by Geant4

 χ^2 / ndf

Prob

"TFC CAN removed 0-neutron-proc. cosmogenic"

Over-efficiency of TFC: ¹¹Be INFŇ

75.95 / 94

0.9134

• main ch: ${}^{12}C(n, 2p){}^{11}Be$

G S

- only 12% prod. is with n
- <-dist. to nearest neut.
- 2% µ track: no neut.
- 97% nearest n <2 m