Neutrino-nucleus coherent scattering: new physics experiments applications.

Marco Vignati, INFN Roma

Pisa, 26/3/2019

Neutrino cross-sections

M. Vignati

Detectable energy

Neutrine Sources

Energy spectrum

Another difficulty: quenching

Nuclear recoil energy is not fully converted to ionization or scintillation

D. Barker, D.-M. Mei / Astropart. Phys. 38 (2012) 1

Recoil Energy (keV)

43 years to be discovered

SICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974 RESEARCH

D. Akimov et al Science 357 (2017), 1123

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

NEUTRINO PHYSICS

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov,^{1,2} J. B. Albert,³ P. An,⁴ C. Awe,^{4,5} P. S. Barbeau,^{4,5} B. Becker,⁶ V. Belov,^{1,2} A. Brown,^{4,7} A. Bolozdynya,² B. Cabrera-Palmer,⁸ M. Cervantes,⁵ J. I. Collar,⁹* R. J. Cooper,¹⁰ R. L. Cooper,^{11,12} C. Cuesta,¹³ † D. J. Dean,¹⁴ J. A. Detwiler,¹³ A. Eberhardt,¹³ Y. Efremenko,^{6,14} S. R. Elliott,¹² E. M. Erkela,¹³ L. Fabris,¹⁴ M. Febbraro,¹⁴ N. E. Fields,⁹ † W. Fox,³ Z. Fu,¹³ A. Galindo-Uribarri,¹⁴ M. P. Green,^{4,14,15} M. Hai,⁹ M. R. Heath,³ S. Hedges,^{4,5} D. Hornback,¹⁴ T. W. Hossbach,¹⁶ E. B. Iverson,¹⁴ L. J. Kaufman,³|| S. Ki,^{4,5} S. R. Klein,¹⁰ A. Khromov,² A. Konovalov,^{1,2,17} M. Kremer,⁴ A. Kumpan,² C. Leadbetter,⁴ L. Li,^{4,5} W. Lu,¹⁴ K. Mann,^{4,15} D. M. Markoff,^{4,7} K. Miller,^{4,5} H. Moreno,¹¹ P. E. Mueller,¹⁴ J. Newby,¹⁴ J. L. Orrell,¹⁶ C. T. Overman,¹⁶ D. S. Parno,¹³ S. Penttila,¹⁴ G. Perumpilly,⁹ H. Ray,¹⁸ J. Raybern,⁵ D. Reyna,⁸ G. C. Rich,^{4,14,19} D. Rimal,¹⁸ D. Rudik,^{1,2} K. Scholberg,⁵ B. J. Scholz,⁹ G. Sinev,⁵ W. M. Snow,³ V. Sosnovtsev,² A. Shakirov,² S. Suchyta,¹⁰ B. Suh,^{4,5,14} R. Tayloe,³ R. T. Thornton,³ I. Tolstukhin,³ J. Vanderwerp,³ R. L. Varner,¹⁴ C. J. Virtue,²⁰ Z. Wan,⁴ J. Yoo,²¹ C.-H. Yu,¹⁴ A. Zawada,⁴ J. Zettlemover,³ A. M. Zderic,¹³ COHERENT Collaboration#

The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. We observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram Csl[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process, were observed in high signal-to-background conditions. Improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.

Coherent experiment

Instantaneous flux at detector during 1 μ s pulse: 1.7x10¹¹ ν_{μ} /cm²/s

Signal observation

14.6 kg Csl[Na] scintillating crystal

153 days beam off 308 days beam on

<u>CEvNS opportunity</u> new physics with compact detectors sensitive to low energies

$sin^2 \vartheta_w$ at low Q

	T _{thres}	Baseline	Z/N	Det. Tec.	Fid. Mass
CONNIE	28 eV	30 m	1.0	CCD (Si)	1 kg
RED100	500 eV	19 m	0.70	Lq.Xe	100 kg
MINER	10 eV	1 m	0.81	⁷² Ge: ²⁸ Si (2:1)	30 kg
TEXONO	100 eV	28 m	0.79	HPGe	1 kg
CONUS	100 eV	10 m	0.79	HPGe	100 kg

Non-standard interactions

Implication for dark matter search

Non-proliferation

Neutrino-based tools for nuclear verification and diplomacy in North Korea

Rachel Carr,¹ Jonathon Coleman,² Mikhail Danilov,³ Giorgio Gratta,⁴ Karsten Heeger,⁵ Patrick Huber,⁶ YuenKeung Hor,⁷ Takeo Kawasaki,⁸ Soo-Bong Kim,⁹ Yeongduk Kim,¹⁰ John Learned,¹¹ Manfred Lindner,¹² Kyohei Nakajima,¹³ James Nikkel,⁵ Seon-Hee Seo,¹⁰ Fumihiko Suekane,¹⁴ Antonin Vacheret,¹⁵ Wei Wang,⁷ James Wilhelmi,¹⁶ and Liang Zhan¹⁷

Can be sensitive to fuel diversion (e.g. Pu removal from core)

Experiments (other than COHERENT)

Content from the Magnificent CEvNS workshop November 2-3 2018, Chicago My comments in Red

Coherent scattering at reactors

CONUS (HPGe)

CONUS

Lindner

- p-type point contact HPGe
- 4x 1kg active mass 3.85kg
- Spec. for pulser res. (FWHM) ≤ 85eV
 → noise threshold ≤ 300eV
- electrical PT-cryocoolers
- ultra low background components
- close collaboration with Canberra

M. Vignati

Ionization detector: quenching factor can be an issue

Cryogenics: when sensitivity matters

M. Vignati

Miner (CDMS)

Mohapatra

• IZIP TES with HV Luke amplification

Μ

- HV Amplification implies that the primary signal is due to ionisation
- Not clear the Quenching Factor at 10s of eVs. it might be zero.

Parameters	Phase-1 (current phase	Phase-2 (Larger phase with
Max payload	4 kg	30 kg
Baseline	~7 eVee	~5 eVee
Lindhard	~1/6-1/5 (Ge) and ~1/20?	~1/6-1/5 for Ge ~1/20? (Si)
NR threshold	~100 eVNR* in Ge/Si HV	100 eVnr* in HV in Ge/Si HV
Background	~1000 DRU	~100 DRU
Neutrino Flux	10 ¹² /cm ² .sec	10 ¹² /cm ² .sec
Distance from	~4 m – 10 m	~2m – 10 m

Ricochet

Misiak

Edelweiss technology: NTD thermistor on HPGE at 10 mK

Early Demonstrator: RED20, heat channel only

Groundbreaking results:

- ▶ 18 eV energy resolution (RMS)
- ► 55 eV energy threshold
- with a 32g Ge Detector

Phonon detector: no quenching

v-cleus

Strauss

CRESST technology: TES on CaWO₄ or Al₂O₃ at 10 mK

- Sapphire and CaWO₄ crystals
- Flexible Si wafers as inner veto

M. Vignat detectors

Si outer veto prototype

v-cleus: 2-phase approach

NU-CLEUS 1kg

A scalable cryogenic detector

- Exploit semiconductor technology
- SQUID multiplexing

Breakthrough for the NU-CLEUS physics program! Impact for other cryogenic experiments!

v-cleus neutrino source

The CHOOZ Power Plant in France

Since March 2018:

- Full access to inner zone of power plant
- Support from engineers on-site for infrastructure and safety
- Permission for background measurements on-site
- Convention (CEA-EDF) for NU-CLEUS in preparation

v-cleus collaboration

<u>Stefan Schönert</u> <u>Raimund Strauss</u> Luca Pattavina Alexander Langenkämper Angelina Kinast Tobias Ortmann Elizabeth Mondragon-Cortes Lothar Oberauer Franz v. Feilitzsch

<u>Federica Petricca</u> Johannes Rothe Franz Pröbst <u>Dieter Hauff</u> Michele Mancuso Lucia Canonica Antonio Bento Leo Stodolsky Gode Angloher

Kick-Off Meeting

Steering committee!

~30 people

٠

Munich Nov7-9 2018

erc

PD

PD

PhD

PhD

PD (PhD) PhD with CEA (50/50)

NU-CLEUS

<u>Thierry Lasserre</u> <u>Matthieu Vivier</u> Victoria Wagner <u>Florence Adellier-Desage</u> Loris Scola

Claudia Nones

+PhDs...

Jochen Schieck Holger Kluck Florian Reindl Christoph Schwertner Vasile Ghete

NU-CLEUS, Raimund Strauss

Intersted insitutions:

IBS Korea??

TU Vienna

INFN, Sapienza

53

v-cleus sensitivity

Magnificent CEvNS, Raimund Strauss

v-cleus milestones

ERC grant 1.65M€ (TUM)

SFB funds + proposal for large equipment

SFB follow up (TUM)

ANR proposal by CEA (Matthieu)

FWF proposal in preparation by HEPHY (Holger)

+ MPP, CEA, HEPHY, TUM core funds ++ new collaborators

v-cleus activities

v-cleus: INFN interested people

Roma1: F. Cappella, L. Cardani, N. Casali, I. Colantoni, A. Cruciani, C. Tomei and M. Vignati

Roma2: R. Cerulli

LNGS: L. Pattavina

Ferrara: V. Guidi and A. Mazzolari

Other INFN collaborators welcomed!

Next v-cleus collaboration meeting, 21-22 May in Paris.

Another INFN opportunity: ⁵¹Cr

- 36 kg of ⁵⁰Cr owned by INFN (GALLEX experiment)
- ⁵⁰Cr need to be converted to ⁵¹Cr at nuclear reactors

Ongoing feasibility study C. Bellenghi, D. Chiesa , L. di Noto, M. Pallavicini, E. Previtali and M. Vignati BULLKID: Kinetic Inductance Detectors for coherent scattering

Cryogenic sensors

Thermistor: semiconductor with high-resistivity (e.g. Ri

Transition edge sensor: superconductor at the transition (e.g. v-cleus)

Kinetic Inductance Detectors (KIDs)

High quality factor (*Q*) resonant circuit biased with a microwave (GHz): signal from amplitude and phase shift.

KID Multiplexing

Different resonators can be coupled to the same feedline with slightly different resonant frequencies.

Resonant frequency modified via the capacitor (C) pattern of the circuit.

Multiplexing of 1000 KIDs with a single cryogenic amplifier demonstrated M. Vignati

CALDER result

L. Cardani, et al, SUST (2018)

- AI(14)Ti(33)AI(30nm) resonator
- 2x2cm² x 350µm
 Silicon substrate
- 25 eV RMS @ 0 eV
- Phonon ε ~ 10%

35

BULLKID single unit

BULLKID aims at a detector of athermal phonons created by nuclear recoils induced by Dark Matter or neutrino scattering.

Mass: increase the detector mass with KIDs on 5 mm instead of 300 μ m thick wafers.

Threshold: reach 20 eVnr threshold acting on the phonon absorption and on the KID sensitivity (25 eV σ demonstrated by CALDER).

BULLKID array

- We will deposit ~ 110 KIDs at once on top of a 3" wafer.
- The KIDs will be coupled to the same feedline for multiplexing.

bottom view

- The wafer is diced from the bottom to create cubic voxels of 5x5x5 mm³.
- ~ 110 cubic voxels of 5x5x5 mm³ can be exploited.
- 0.29 g / voxel
- 32 g total target mass.

Phonon x-talk and silicon dicing

- The smaller the surface thickness the smaller the leak in nearby voxels
- MC Phonon simulations ongoing to quantify the leak. Preliminary results indicate it is 15% (vs 10% in CALDER)

interaction

A Risk: poor surface quality reduce phonon propagation. The dicing technology is being tuned to the BULLKID needs.

Material	Germaniur
Tile size (mm ³)	30×10×2
Blade type	G1A 320
Blade width (μ m)	250
Blade rotation (rpm)	3000
Blade speed (mm/s)	0.1
Groove depth (μ m)	1550
Number of grooves	9×28
Groove step (mm)	1
Primary radius of curvature along y (m)	40
QM radius of curvature (m)	95.6
Angular bandpass (arcsec)	4.3

Detector array

BULLKID: one 3" 5mm thick wafer

- 0.29 g / voxel
- 110 voxels / 3" wafer
- 32 g / 3" wafer.

Possible experiment with kg mass:

- Maybe 4" or 6" wafer 1 cm thick.
- Stack a number of wafers to reach the total target mass.
- No inert material between inner voxels:
 - Background identification (mulitple hits).
 - Fiducialization.

BULLKID collaboration

Istituto Nazionale di Fisica Nucleare:

C. Bellenghi, L. Cardani, N. Casali, A. Cruciani, V. Pettinacci and M. Vignati.

Zaragoza University:

M. Martinez

Consiglio Nazionale delle Ricerche

I. Colantoni, G. Pettinari.

Ferrara University: V. Guidi, A. Mazzolari

Genova University *S. Di Domizio.*

CSNSM - CNRS/IN2P3 *H. Le Sueur*

Institut Néel - CNRS M. Calvo, J. Goupy, A. Monfardini

Conclusions

- Large and growing interest in CEvNS since its observation in 2017
- Room for:
 - Precision measurements
 - Search for non-standard interactions
 - Non-proliferation application
- Cryogenic detectors can lead the field thanks to the low threshold:
 - v-cleus experiment (TES)
 - Ricochet (NTD-Ge)
 - ► BULLKID R&D (KID)