Double & triple charm & beauty from N-parton scatterings in p-p, p-A, A-A at the LHC

Exploring matter with charm & beauty prod. Chia, Sardegna, 3th September 2019 David d'Enterria CERN

(*) Results based upon:

D.d'E & A.Snigirev: arXiv:1211.0197 [PLB 718 (2013) 1395] arXiv:1301.5845 [PLB 727 (2013) 157] D.d'E & A.Snigirev: arXiv:1612.05582 [PRL 118 (2017) 122001] arXiv:1612.08112 [EPJC 78 (2018) 359] D.d'E & A.Snigirev: arXiv:1708.07519 [Adv.Ser.Direct.HEP29 (2018) 159]

Multi-parton interactions at the LHC

 MPI are intrinsic component of hadron collisions (p,Pb) = non-pointlike objects with finite transverse size and increasingly
 larger gluon density.

MPI O(1-3 GeV) clearly observed in hadron colliders:

Double hard parton scatts. O(3-100 GeV) should also take place. Seen?

Double Parton Scattering x-sections (p-p)

Assuming that the probability to produce two hard collisions is independent, one can economically write double parton scatterings (DPS) cross section as the product of two single-parton scatterings (SPS) ones:

$$\sigma_{(hh' \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(hh' \to a)}^{\text{SPS}} \cdot \sigma_{(hh' \to b)}^{\text{SPS}}}{\sigma_{\text{eff}}}$$

normalized by an effective x-section (σ_{eff}) and with a trivial combinatorial factor (m) to avoid double-counting in case of same particles produced.

- **How to interpret** σ_{eff} ? What values one would naively expect for it?
 - The most generic expression for DPS cross section reads:

$$\sigma_{(hh' \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \sum_{i,j,k,l} \int \widehat{\Gamma_h^{ij}}(x_1, x_2; \mathbf{b_1}, \mathbf{b_2}; Q_1^2, Q_2^2) \times \hat{\sigma}_a^{ik}(x_1, x_1', Q_1^2) \, \hat{\sigma}_b^{jl}(x_2, x_2', Q_2^2) \\ \times \widehat{\Gamma_{h'}^{kl}}(x_1', x_2'; \mathbf{b_1} - \mathbf{b}, \mathbf{b_2} - \mathbf{b}; Q_1^2, Q_2^2) \, dx_1 dx_2 dx_1' dx_2' d^2 b_1 d^2 b_2 d^2 b$$

Generalized PDFs = f(x,Q^2,b)

Double Parton Scattering x-sections (p-p)

Assumption 1: Generalized PDFs factorize into longitudinal & transverse components:

Transv. density = f(b)

$$\Gamma_h^{ij}(x_1, x_2; \mathbf{b_1}, \mathbf{b_2}; Q_1^2, Q_2^2) = D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) f(\mathbf{b_1}) f(\mathbf{b_2})$$

p-p transv. overlap function (mb⁻¹): $t(\mathbf{b}) = \int f(\mathbf{b}_1) f(\mathbf{b}_1 - \mathbf{b}) d^2 b_1$

<u>Assumption 2</u>: The longitudinal double-PDF is the product of 2 single PDF (i.e. no parton correlations in colour, momentum, flavour, spin,...) $D_{h}^{ij}(x_{1}, x_{2}; Q_{1}^{2}, Q_{2}^{2}) = D_{h}^{i}(x_{1}; Q_{1}^{2}) D_{h}^{j}(x_{2}; Q_{2}^{2})$

Then, σ_{eff} corresponds to simple geom. overlap x-section of 2 protons:

$\sigma_{\rm eff}$ =	$\left[\int d^2 b t^2(\mathbf{b})\right]$
----------------------	---

Experimentally: $\sigma_{\text{eff}}(\text{exp}) \approx 15 \text{ mb.}$ proton "hard" radius: r = 0.3-0.7 fm appears smaller than e.m. one.

with naif	expected	size of	'σ _{~"} ≈	35 mb
			еп	

Model	Form of density,	Pred	Measurements	
for density	dN/d^3r	rms r	σ_{eff}	Scale (fm)
Solid sphere Gaussian	Constant, $r < r_p$	$\sqrt{3/5}r_p$ $\sqrt{3\Sigma}$	$\frac{4\pi r_p^2}{4\pi\Sigma^2}$	$r_p = 0.73$ $\Sigma = 0.34$
Exponential	$e^{-r/\lambda}$	$\sqrt{12\lambda}$	$35.5\lambda^2$	$\lambda = 0.20$
Fermi, $\lambda/r_0 = 0.2$	$(e^{(r-r_0)/\lambda}+1)^{-1}$	1.07r ₀	$4.6r_0^2$	$r_0 = 0.56$

Understandable: Probability of 2nd scatt. is larger if 1st scatter already took place (centrality bias). David d'Enterria (CERN)

DPS studies with $Q\overline{Q}$: p-p $\rightarrow J/\Psi+Y$, Y+D

Uncorrelated Y+D azimuthal production in pp at 7 TeV:

- Extracted σ_{eff} values differ by up to a factor of 8 for similar (g-induced) processes at 1.96 TeV & 7 TeV:
 - Energy-dependent parton transverse profile?
 - (Higher-order) SPS contributions under control?

DPS studies with $Q\overline{Q}$: p-p \rightarrow W⁺+J/ Ψ , J/ Ψ J/ Ψ

- **Extracted** σ_{eff} values differ at 1.96 TeV & 7 TeV:
 - (Higher-order) SPS contributions under control?
 - Energy-dependent parton transverse profile? (Quark vs. gluon?)

DPS studies with $Q\overline{Q}$: p-p \rightarrow W⁺+J/ Ψ , J/ Ψ J/ Ψ

■ Uncorrelated W+J/Ψ azimuthal production in pp at 7 TeV:

Extracted σ_{eff} values differ at 1.96 TeV & 7 TeV:

Lansberg&Shao&Yamanaka, PLB781 (2018) 485

- (Higher-order) SPS contributions under control?
- Energy-dependent parton transverse profile? (Quark vs. gluon?)

Summary of world σ_{eff} extractions vs. \sqrt{s}

Extracted σ_{eff} differ from ~2 mb (large DPS) to ~20 mb (small DPS):

- (Higher-order) SPS contributions removed differently/properly?
- Energy evolution of parton transverse profile?
- Invalid σ_{eff} geometric interpretation? Complicated parton correlations

Can 3-,N-scatterings improve our understanding of transv. proton profile? Can p-Pb & Pb-Pb improve our understanding of transv. proton profile? 2nd LHCb HI Workshop, Sept'17 8/26

Double Parton Scatterings in p-A collisions

Double Parton Scattering x-sections (p-A)

Two contributions to DPS x-section in p-A:

 $\sigma^{\text{DPS},1}_{(pA \to ab)} = A \cdot \sigma^{\text{DPS}}_{(pN \to ab)} \quad \clubsuit \quad \sigma^{\text{DPS},2}_{(pA \to ab)} = \sigma^{\text{DPS}}_{(pN \to ab)} \cdot \sigma_{\text{eff,pp}} \cdot F_{\text{pA}}$

 $\Rightarrow \sigma_{(pA)}^{\text{DPS}} = \sigma_{(pA)}^{\text{DPS},1} + \sigma_{(pA)}^{\text{DPS},2}$

p-A overlap function

 $F_{pA} = \int d^2 r T_{pA}^2(\mathbf{r}) = 30.4 \text{ mb}^{-1}$ Pb Woods-Saxon density (r=6.62 fm, a=0.546 fm)

David d'Enterria (CERN)

Relative weight of DPS terms: $\sigma^{DPS,1}$: $\sigma^{DPS,2} = 0.7$: 0.3 (small A), 0.33: 0.66 (large A)

"Pocket" formula for DPS p-A x-section:

$$\sigma_{(pA \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(pN \to a)}^{\text{SPS}} \cdot \sigma_{(pN \to b)}^{\text{SPS}}}{\sigma_{\text{eff,pA}}} \qquad \qquad \sigma_{\text{eff,pA}} = \frac{\sigma_{\text{eff,pp}}}{A + \sigma_{\text{eff,pp}}} \frac{\sigma_{\text{eff}} = 13 \pm 2\text{mb}}{A + \sigma_{\text{eff,pp}}} = 21.5 \pm 1.1 \,\mu\text{b}$$

► Ratio of DPS p-Pb/p-p x-sections: $\sigma_{\text{eff,DPS}}/\sigma_{\text{eff,DPS,pA}} \approx [A + A^{4/3}/\pi]$

DPS x-sections are large in p-A: a factor ×600 for p-Pb (!)
 Pb transverse density (F_{pA}) well known. Alternative extraction of $\sigma_{eff,pp}$

DPS cross sections (p-Pb, 8.8 TeV)

[DdE,Snigirev, NPA 931 (2014)303]

Cross sections & rates for DPS processes with J/ψ,Y & W, Z bosons (Also V. Goncalves(2018) double-J/ψ, Paukunen(2019) double-D,...)

pPb (8.8 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + \mathrm{W}$	J/ψ +Z	
$\sigma^{ ext{SPS}}_{ ext{pN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{pN} ightarrow b}$	45 μb (×2)	45 $\mu\mathrm{b},2.6~\mu\mathrm{b}$	45 $\mu \mathrm{b},60~\mathrm{nb}$	45 $\mu \mathrm{b},35~\mathrm{nb}$	
$\sigma^{ ext{dpps}}_{ ext{pPb}}$	$45~\mu{ m b}$	$5.2~\mu{ m b}$	$120 \mathrm{nb}$	$70 \mathrm{nb}$	
$N_{pPb}^{DPS} (1 \text{ pb}^{-1})$	~ 65	~ 60	$\sim \! 15$	~3	
	$\Upsilon+\Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	$\mathrm{ss}\mathrm{WW}$	
$\sigma^{ ext{SPS}}_{ ext{pN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{pN} ightarrow b}$	$2.6 \ \mu b \ (\times 2)$	$2.6~\mu\mathrm{b},60~\mathrm{nb}$	$2.6~\mu\mathrm{b},35~\mathrm{nb}$	$60 \text{ nb} (\times 2)$	
$\sigma^{ ext{DPS}}_{ ext{pPb}}$	150 nb	$7 \mathrm{nb}$	4 nb	$150 \mathrm{~pb}$	
$N_{pPb}^{DPS} (1 \text{ pb}^{-1})$	~ 15	~8	~ 1.5	~ 4	

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

- Many double hard scatterings processes w/ visible p-Pb x-sections
 Useful independent extraction of σ_{eff} (pp) possible.
- LHCb is an excellent experiment to try such 1st-ever measurements.

Double Parton Scatterings in A-A collisions

Double Parton Scattering x-sections (A-A)

Three contributions to DPS x-section in A-A:

Third "N_{coll} term" ∝ A²·T_{AA}(0), clearly dominant (1:4:200 ratio for PbPb) "Genuine" DPS (within same nucleon): ~2.5% (in Pb-Pb) or ~13% (Ar-Ar)
 "Pocket formula" for DPS A-A x-section:

$$\sigma_{(AA \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(NN \to a)}^{\text{SPS}} \cdot \sigma_{(NN \to b)}^{\text{SPS}}}{\sigma_{\text{eff},AA}} \qquad \sigma_{\text{eff},AA} = \frac{1}{A^2 [\sigma_{\text{eff},pp}^{-1} + \frac{2}{A} T_{AA}(0) + \frac{1}{2} T_{AA}(0)]} = 1.5 \text{ nb}$$

► Ratio of DPS Pb-Pb/p-p x-sections: $\sigma_{eff,pp}/\sigma_{eff,AA} \propto A^{3.3}/5 \simeq 9 \cdot 10^6$! Strong centrality dependence:

$$\sigma_{(AA \to ab)}^{\text{DPS}}[b_1, b_2] \approx \left(\frac{m}{2}\right) \sigma_{(NN \to a)}^{\text{SPS}} \cdot \sigma_{(NN \to b)}^{\text{SPS}} \cdot f_{\%} \sigma_{AA} \cdot \left\langle \mathsf{T}_{AA}[b_1, b_2] \right\rangle^2$$

2nd LHCb HI Workshop, Sept'17

David d'Enterria (CERN)

DPS cross sections in (Pb-Pb, 5.5 TeV)

[DdE,Snigirev, NPA 931 (2014)303]

Cross sections & rates for DPS processes with J/ψ , Y & W, Z bosons:

PbPb (5.5 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + W$	$J/\psi + Z$
$\sigma^{ ext{SPS}}_{ ext{NN} ightarrow a},\sigma^{ ext{SPS}}_{ ext{NN} ightarrow b}$	25 μb (×2)	$25~\mu\mathrm{b},1.7~\mu\mathrm{b}$	$25~\mu\mathrm{b},30~\mathrm{nb}$	25 $\mu \mathrm{b},20~\mathrm{nb}$
$\sigma^{ ext{DPS}}_{ ext{PbPb}}$	$210 \mathrm{~mb}$	$28 \mathrm{~mb}$	$500~\mu{ m b}$	$330~\mu{ m b}$
$\frac{N_{PbPb}^{DPS}}{N_{PbPb}^{DPS}} (1 \text{ nb}^{-1})$	~ 250	~ 340	~ 65	~14
	$\Upsilon+\Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	ssWW
$\sigma^{ ext{SPS}}_{ ext{NN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{NN} ightarrow b}$	$1.7 \ \mu b \ (\times 2)$	$1.7~\mu\mathrm{b},30~\mathrm{nb}$	$1.7~\mu\mathrm{b},20~\mathrm{nb}$	30 nb (×2)
$\sigma^{ ext{DPS}}_{ ext{PbPb}}$	960 $\mu { m b}$	$34 \ \mu b$	$23~\mu{ m b}$	630 nb
${ m N_{PbPb}^{ m DPS}}$ (1 nb ⁻¹)	~ 95	~ 35	~8	~15

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

Visible rates for many double hard scatterings processes in Pb-Pb!

Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV

FONLL+CEM (R.Vogt): Single-parton J/ ψ

- NLO accuracy.
- Scales: $\mu_{\rm B} = \mu_{\rm B} = 1.5 \cdot m_{\rm c}$
- Good agreement with Tevatron&LHC data

- EPS09 Pb nPDF

20–35% shadowing x-section reduction $^{\text{bp}}$ At 5.5 TeV: $\sigma^{\text{DPS}}(\text{Pb-Pb} \rightarrow J/\psi J/\psi X) = 200 \pm 50 \text{ mb}$

20% of Pb-Pb collisions have two J/ ψ produced !

[DdE,Snigirev, PLB727 (2013)157]

Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV

[DdE,Snigirev, PLB727 (2013)157]

David d'Enterria (CERN)

Visible rates:

- ► Reduced x-sections per unit-y: $d\sigma_{J/\psi}/dy \approx \sigma_{J/\psi}/8$
- ► BR(J/ ψ → I⁺I⁻) ≈ 6%
- ► Typical ALICE/CMS acceptance & efficiencies: $\epsilon \approx 1/12$

Expected dimuon rates including yield all loses & 1 nb⁻¹ integ. luminosity:

 $\mathcal{N} = \sigma_{_{Pb-Pb} \rightarrow J/\psi J/\psi'}^{DPS} / (\varepsilon \cdot \mathcal{L}_{_{int}}) \approx 250 \text{ double-J/}\psi \text{ per year}$

(x2 less including final-state suppression)

Triple-, N-Parton Scatterings

Triple parton scattering x-sections (p-p)

Assuming that the probabilities for 3 hard collisions to be independent of each other, one can again write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{\textit{m}}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff},\text{TPS}}^2}$$

normalized by the square of an eff. x-section ($\sigma^2_{eff,TPS}$) plus a trivial combinatorial factor (m/3!) to avoid triple-counting in case of same particles produced: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

How to interpret o_{eff,TPS}? What values one naively expects for it?
 Most generic expression for TPS cross section:

$$\sigma_{hh' \to a_{1}a_{2}a_{3}}^{\text{TPS}} = \left(\frac{m}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_{h}^{ijk} x_{1}, x_{2}, x_{3}; \mathbf{b_{1}}, \mathbf{b_{2}}, \mathbf{b_{3}}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times \hat{\sigma}_{a_{1}}^{il} (x_{1}, x_{1}', Q_{1}^{2}) \cdot \hat{\sigma}_{a_{2}}^{jm} (x_{2}, x_{2}', Q_{2}^{2}) \cdot \hat{\sigma}_{a_{3}}^{kn} (x_{3}, x_{3}', Q_{3}^{2}) \\ \times \Gamma_{h'}^{lmn} (x_{1}', x_{2}', x_{3}'; \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}, \mathbf{b_{3}} - \mathbf{b}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times dx_{1} dx_{2} dx_{3} dx_{1}' dx_{2}' dx_{3}' d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} d^{2} b.$$
Generalized PDFs = f(x, Q^{2}, \mathbf{b})

Triple parton scattering x-sections (p-p)

Assumption 1: Factorize generalized Triple-PDF into longitudinal & transverse components: $\Gamma_h^{ijk}(x_1, x_2, x_3; \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}; Q_1^2, Q_2^2, Q_3^2)$

 $= D_h^{ijk} x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$

p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2 b_1$, with $\int d^2 b T(\mathbf{b}) = 1$.

<u>Assumption 2</u>: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

Then, $\sigma^2_{eff,TPS}$ is simply the inverse of the cube of the transv. pp overlap:

$$\sigma_{\rm eff, TPS}^2 = \left[\int d^2 b \, T^3(\mathbf{b})\right]^{-1}$$

By testing many proton overlaps/profiles (hard sphere, Gaussian, expo, dipole fit), we find a close relationship between $\sigma_{eff,TPS} \& \sigma_{eff}$:

$$\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$$
, with $k = 0.82 \pm 0.11$

Measuring TPS provides independent info on σ_{eff} and p transv. profile.

N-parton scattering x-sections (p-p)

Assuming that the probabilities for N hard collisions to be independent of each other, one can write a generic pocket-formula for NPS x-section:

$$\sigma_{hh' \to a_1 \dots a_n}^{\text{NPS}} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdots \sigma_{hh' \to a_n}^{\text{SPS}}}{\sigma_{\text{eff,NPS}}^{n-1}}$$

normalized by the Nth-1 power of an effective x-section ($\sigma_{eff,NPS}$) plus a trivial combinatorial factor (m/n!) to avoid double,triple,N-counting in case of same particles produced:

• DPS:
$$m = 1$$
 if $a_1 = a_2$; and $m = 2$ if $a_1 \neq a_2$.

• TPS: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

Ignoring all parton correlations, σ_{eff,NPS} is the inverse Nth-1 power of the integral of the Nth power of the pp overlap function:

$$\sigma_{\rm eff, \rm NPS} = \left\{\int d^2 b\, T^n(\mathbf{b})\right\}^{-1/(n-1)}$$

A generic framework for the most economical (geometrical) expressions for N-parton scattering cross sections is available now.

Triple charm & beauty production (p-p)

- TPS x-sections are small: σ (SPS)³/ σ (eff)² ≈ 1 fb for σ (SPS) ≈ 1 µb, but rise fast (cube of SPS) with c.m. energy.
- **Charm & beauty** have large enough σ (SPS) to attempt TPS observation:

■ Triple charm amounts to ~15% (50%) of inclusive charm x-sections at LHC (FCC). Contribution from triple-SPS, double-SPS processes?

Triple-J/ψ from SPS production (p-p)

H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/Ψ x-sections with SPS HELAC-ONIA plus pocket formulas:

(a) SPS

		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5} \pm 0.18) \times 10^{-2}$	$(8.7^{+56}_{-7.5} \pm 0.098) \times 10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$130 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$1.3 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}} \right)^2$	$18 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}} \right)^2$
	SPS	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8} \pm 0.21) \times 10^{-2}$	$(5.8^{+39}_{-5.1}\pm 0.29) imes 10^{-2}$
$27 { m TeV}$	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$5.0 imes \left(rac{10 \text{ mb}}{\sigma_{\text{eff},3}} ight)^2$	$57 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	SPS	$0.59^{+4.4}_{-0.52}\pm0.016$	$(3.0^{+25}_{-2.7}\pm 0.23) \times 10^{-2}$	$(7.2^{+63}_{-6.5} \pm 0.38) \times 10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 imes \left(\frac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}}\right)^2$	$260 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0} \pm 0.72) \times 10^{-2}$	$(36^{+290}_{-32} \pm 1.8) \times 10^{-2}$
$100 { m TeV}$	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$6500 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$

 J/ψ

 J/ψ

 J/ψ

0000000

00000000

Triple Parton Scattering x-sections (p-A)

Three contributions to TPS x-section in p-A:

(TPS yields in pPb: 10% "genuine", 50% involve 2 nucleons, 40% involve 3 different Pb nucleons) • "Pocket" formula for TPS p-A x-section:

$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^{2}} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^{2}} + \frac{3 F_{\mathrm{pA}}[\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}}[\mathrm{mb}^{-2}]\right]^{-1/2}$$

• $\sigma_{\text{eff,TPS,pPb}} = 0.29 \pm 0.04 \text{ mb}$ (x45 smaller than $\sigma_{\text{eff,TPS}} = 12.5 \text{ mb}$)

TPS x-sections are large in p-A: a factor ×45 for p-Pb compared to p-p
 Pb transv. density (F_{pA}, C_{pA}) well-known: Alternative extraction of o_{eff,pp}
 2nd LHCb HI Workshop, Sept'17 23/26

Triple charm & beauty production (p-Pb)

Charm & beauty have very large TPS x-sections at the LHC & above:

Triple charm amounts to ~20% (~100%!) of inclusive charm x-sections at LHC (FCC). Large triple J/Ψ production at FCC: σ(J/ψJ/ψJ/ψ+X) ≈ 1 mb
 Triple beauty amounts to ~3% of inclusive beauty x-sections at FCC.

Summary (DPS)

- What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?
- Double hard parton scatterings. p-p cross section:

$$\sigma^{\text{DPS}}_{(hh' \to ab)} = \left(\frac{m}{2}\right) \frac{\sigma^{\text{SPS}}_{(hh' \to a)} \cdot \sigma^{\text{SPS}}_{(hh' \to b)}}{\sigma_{\text{eff}}}$$

In absence of parton correlations:

$$\sigma_{\rm eff} = \left[\int d^2 b t^2(\mathbf{b})\right]^{-1}$$

geom. overlap area of 2 proton transv. profiles

• $\sigma_{eff}(exp) \approx 2-20$ mb at Tevatron/LHC. Can HI colls. help to clarify this?

Derived DPS x-sections "pocket formula" for p-A and A-A:

$$\sigma_{\rm eff,pA} = \frac{\sigma_{\rm eff,pp}}{A + \sigma_{\rm eff,pp} \, \rm F_{pA}} = 21.5 \pm 1.1 \, \mu \rm b \qquad \sigma_{\rm eff,AA} = \frac{1}{A^2 [\sigma_{\rm eff,pp}^{-1} + \frac{2}{A} T_{\rm AA}(0) + \frac{1}{2} T_{\rm AA}(0)]} = 1.5 \, \rm nb$$

Huge enhancements ! $\sigma_{\rm eff, DPS} / \sigma_{\rm eff, DPS, pA} \approx 600$, $\sigma_{\rm eff, pp} / \sigma_{\rm eff, AA} \propto A^{3.3} / 5 \simeq 9 \cdot 10^6$

■ Large DPS yields in p-A (in particular with quarkonia, → LHCb) provide many useful independent extractions of $\sigma_{eff,pp}$.

■ Large DPS in Pb-Pb but dominated by scatts. from different nucleons. (~16% sensitivity on $\sigma_{\text{eff.pp}}$, from DPS with lighter ions such as Ar-Ar).

Summary (NPS, TPS)

Derived a generic expression for NPS x-sections in p-p collisions:

$$\sigma_{hh' \to a_1 \dots a_n}^{\text{NPS}} = \left(\frac{\textit{m}}{n!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdots \sigma_{hh' \to a_n}^{\text{SPS}}}{\sigma_{\text{eff,NPS}}^{n-1}} \qquad \sigma_{\text{eff,NPS}} = \left\{\int d^2 b \, T^n(\mathbf{b})\right\}^{-1/(n-1)}$$

Applied to TPS case, it gives a very simple relationship between effective double and triple-parton cross sections:

 $\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$, with $k = 0.82 \pm 0.11$

- Triple charm amounts to ~15% (50%) of inclusive charm x-sections in p-p collisions at LHC (FCC). Triple-J/ Ψ , dominated by DPS/TPS, is a "golden channel" to extract $\sigma_{\text{eff,pp}}$ at the LHC (→LHCb)!
 - Derived TPS x-sections "pocket formula" for p-A:

$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^2} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^2} + \frac{3 F_{\mathrm{pA}}[\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}}[\mathrm{mb}^{-2}]\right]^{-1/2}$$

Large TPS yields in p-A (in particular with charm) provide useful independent extractions of σ_{eff.pp}.

Backup slides

Summary (II)

Large x-sections & rates for DPS processes w/ J/\psi, Y & W,Z bosons:

System		$J/\psi \!+\! J/\psi$	$J/\psi\!+\!\Upsilon$	$J/\psi + W$	$J/\psi + Z$	-
p–Pb	$\sigma^{ ext{DPS}}$	45 µb	5.2 µb	120 nb	70 nb	-
8.8 TeV	$N^{DPS}(1 nb^{-1})$	~65	~ 60	$\sim \! 15$	~3	► DPS in p-A
		$\Upsilon + \Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	ss WW	can help
p–Pb	$\sigma^{ ext{DPS}}$	150 nb	7 nb	4 nb	150 pb	
8.8 TeV	$N^{DPS}(1 nb^{-1})$	~15	$\sim\!\!8$	~ 1.5	~5	eff,pp
						-
System		$J/\psi \!+\! J/\psi$	$J/\psi\!+\!\Upsilon$	$J/\psi + W$	$J/\psi + Z$	-
Pb–Pb	$\sigma^{ ext{DPS}}$	210 mb	28 mb	500 µb	330 µb	~2.5% yields
5.5 TeV	$N^{DPS}(1 nb^{-1})$	~ 250	\sim 340	~ 65	~ 14	from "genuine"
		$\Upsilon + \Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	ss WW	Info on parton
Pb–Pb	$\sigma^{ ext{DPS}}$	960 µb	34 µb	23 µb	630 nb	correlations
5.5 TeV	$N^{DPS}(1 nb^{-1})$	~95	~ 35	$\sim\!\!8$	~15	in nucleus?

Outline

- Introduction Double Parton Scattering in p-p collisions:
 - Empirical "pocket formula" for the DPS x-sections
 - Experimental DPS studies: difficulties in $\sigma_{_{\text{eff}}}$ extraction
- Double-Parton-Scattering in p-A collisions:
 - DPS "pocket formula" x-section. Enhancement factor wrt. DPS(pp): $\times 3 \cdot A$
 - x-sections & rates for DPS processes with J/ψ , Y & W,Z bosons: N_{DPS}=5–65
 - <u>Case study</u>: Same-sign WW in p-Pb at 8.8 TeV: $\sigma(ssWW,DPS) \approx 150 \text{ pb} > \sigma(ssWWjj,SPS) \approx 100 \text{ pb}$ $N_{visible}(ssWW,DPS) \approx 5 \text{ (leptonic decays) at 8.8 TeV}$
- Double-Parton-Scattering in A-A collisions:
 - DPS "pocket formula" x-section. Enhancement factor wrt. DPS(pp): $\times A^{3.3}/5$
 - x-sections & rates for DPS processes w/ J/ ψ ,Y & W,Z bosons: N_{DPS}=10–250
 - <u>Case study</u>: Double-J/ ψ in Pb-Pb at 5.5 TeV: 20% (30%) of MB (central) Pb-Pb colls. produce 2 J/ ψ N_{visible}(J/ ψ J/ ψ →I⁺I⁻I⁺I) \approx 250 at 5.5 TeV

DPS searches at LHC: $p-p \rightarrow W^++2j$

Small signal in W+2jets events: Via di-jet p_{τ} asymmetry (~0 in DPS)

DPS "golden channel": Same-sign WW

- Same-sign W-W production from 2 independent hard scatterings is a "golden" DPS signature:
 - Well controlled pQCD x-sections.
 - Clean experimental final-state:
 2 like-sign leptons + missing-E_T

[Kulesza, Stirling, Gaunt,

Treleani, Del Fabbro, ...]

Backgrounds: Same-sign W-W production in single parton scatterings (SPS) is higher-order and occurs only with 2 extra jets:

σ(WW,DPS)~1/3·σ(WWjj,SPS), but SPS background reducible by more than x20 applying jet cuts.

Case study: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

 \mathbf{W}^+

Theoretical setup:

- MCFM 6.2: Single-parton W⁺,W⁻ W⁺W⁺jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_w, \ \mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF:

Isospin+shadow. effects on total inclusive x-sections: W⁻ : +7% W⁺ : -15% compared to p-p

تر ₩

Case study: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

p

[DdE,Snigirev, PLB718 (2013)1395]

Theoretical setup:

- MCFM 6.2: Single-parton W⁺,W⁻ W⁺W⁺jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_w, \ \mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF
 - Uncertainties: ~10%
- VBFNLO 2.6.0: W⁺W⁺jj (EWK) background
 - NLO accuracy
 - Scales: $\mu^2 = t_{w,z}$
 - CT10 PDF
 - Uncertainties: <10%

Cross sections in pb (signal & background):

p-Pb final-state:	W^+	W^-	W^+W^-	W ⁺ W ⁺ jj (QCD)	W ⁺ W ⁺ jj (VBF)	$W^{\pm}W^{\pm}$ (DPS)
Code (process #):	MCFM (1)	MCFM (6)	MCFM (61)	MCFM (251)	VBFNLO (250)	Eq. (15)
Order (σ units):	NLO (µb)	NLO (µb)	NLO (nb)	'NLO' (pb)	NLO (pb)	(pb)
$\sqrt{s_{\rm NN}} = 5.0 {\rm TeV}$	6.85 ± 0.68	5.88 ± 0.59	5.48 ± 0.56	12.1 ± 1.2	12.4 ± 0.6	44. ± 8.
$\sqrt{s_{_{\rm NN}}} = 8.8 \text{ TeV}$	12.6 ± 1.3	11.1 ± 1.1	13.0 ± 1.3	40.4 ± 4.0	51.8 ± 2.0	152. ± 27.

Results: p-Pb \rightarrow W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

Cross sections for all relevant SPS & DPS processes vs sqrt(s):

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

Measurable final-states:

- ► W's branching ratios:
 - BR(W \rightarrow Iv) \approx 3 \times 1/9, BR(W \rightarrow qq') \approx 2/3
 - Both leptonic: 4 final-states ($\mu\mu$,ee,e μ , μ e): 4×(1/9)² ≈ 1/20, 1/16 (+ τ) [1 leptonic + 1 hadronic (jet-charge): 2/9 ×4/3 ≈ 0.3]
- ► Typical ATLAS/CMS acceptances & efficiencies
 - Leptons: |y| < 2.5, $p_T > 15 \text{ GeV} \Rightarrow \epsilon_{WW} \approx 40\%$

LHC p-Pb luminosities (note: very small pileup):

► = 0.2–2 pb⁻¹ (increase to nominal p intensity, reduce beam size) \mathcal{L}_{int}

Expected (purely leptonic) rates including yield loses & luminosity:

 $N_{\rm DPS} = \sigma_{pPb \to WW}^{\rm DPS} / (\varepsilon \cdot \mathcal{L}_{\rm int}) \approx 1-10$ same-sign WW pairs/year

(factor \times 6 more in 1 lepton + 1-jet channel)

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

Typical DPS-sensitive kinematical distributions for signal & background:

p-Pb @ 8.8 TeV (2 pb⁻¹): Same-sign leptons azimuthal separation: Compare to: $p-p \rightarrow W+2j @ 7 \text{ TeV} (36 \text{ pb}^{-1}):$ dijet azimuthal separation

(Other reducible bckgds: WZ,Z^(*)Z^(*),B⁰B⁰)