



# Fixed-Target Opportunities at the (HL)LHC

### J.P. Lansberg

#### IPN Orsay - Paris-Sud U./Paris Saclay U. -CNRS/IN2P3

## Second LHCb Heavy Ion Workshop : Exploring Matter with Precision Charm and Beauty Production Measurements in Heavy Nuclei Collisions

4-6 September 2019, Chia, Italy

# Part I

# Introduction

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 2 / 22

크

イロト イヨト イヨト イヨト

Contributions to the ESPP update and other scientific sources

3

イロト イポト イヨト イヨト

Contributions to the ESPP update and other scientific sources

### 3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

• Physics opportunities for a fixed-target programme in the ALICE experiment

by F. Galluccio et al.: ID 47

- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

Contributions to the ESPP update and other scientific sources

### 3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

• Physics opportunities for a fixed-target programme in the ALICE experiment

by F. Galluccio et al.: ID 47

- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

#### **Physics Beyond Colliders documents**

- Physics Beyond Colliders: QCD Working Group Report by the PBC QCD Working Group (A. Dainese et al.) : arXiv:1901.04482
- Summary Report of Physics Beyond Colliders at CERN

by R. Alemany et al.: arXiv:1902.00260

- CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
- Summary by the PBC LHC FT Working Group: yet to appear

Contributions to the ESPP update and other scientific sources

### 3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

• Physics opportunities for a fixed-target programme in the ALICE experiment

by F. Galluccio et al.: ID 47

- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

#### **Physics Beyond Colliders documents**

- Physics Beyond Colliders: QCD Working Group Report by the PBC QCD Working Group (A. Dainese et al.) : arXiv:1901.04482
- Summary Report of Physics Beyond Colliders at CERN

by R. Alemany et al.: arXiv:1902.00260

- CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
- Summary by the PBC LHC FT Working Group: yet to appear

#### **Reviews**, special issues

- S.J. Brodsky et al.: Phys.Rept. 522 (2013) 239
- AFTER@LHC Study Group Review: arXiv:1807.00603 [hep-ex]
- Adv. High En. Phys. Special issue

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 4 / 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- · Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

↔ high-energy neutrino & cosmic-ray physics

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- · Gluon EMC effect to understand the quark EMC effect
- Proton charm content  $\leftrightarrow$  high-energy neutrino & cosmic-ray physics

### Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

· Determination of the linearly polarised gluons in unpolarised protons

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- Gluon EMC effect to understand the quark EMC effect
- Proton charm content  $\leftrightarrow$  high-energy neutrino & cosmic-ray physics

### Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

· Determination of the linearly polarised gluons in unpolarised protons

#### Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
- · Rapidity scan of the azimuthal asymmetries thanks to a broad rapidity reach
- Test the factorisation of cold nuclear effects from p + A to A + B collisions with Drell-Yan

イロト イヨト イヨト

# Part II

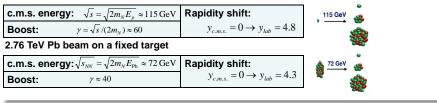
# Kinematics, Possible Implementations and Luminosities

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 5 / 22

J.P. Lansberg (IPNO)


FT@(HL)LHC

September 6, 2019 6 / 22

<ロト <回ト < 回ト < 回ト :

#### **Energy range similar to RHIC**

#### 7 TeV proton beam on a fixed target



• □ ▶ • • □ ▶ • □ ▶ • □ ▶

#### **Energy range similar to RHIC**

7 TeV proton beam on a fixed target

| <b>c.m.s. energy:</b> $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$         | Rapidity shift:                            | 115 GeV    |
|-----------------------------------------------------------------------------------|--------------------------------------------|------------|
| <b>Boost:</b> $\gamma = \sqrt{s} / (2m_N) \approx 60$                             | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ | @          |
| 2.76 TeV Pb beam on a fixed target                                                |                                            | 322        |
| <b>c.m.s. energy:</b> $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ |                                            | 🎪 72 GeV 🎂 |
| <b>Boost:</b> $\gamma \approx 40$                                                 | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ | *          |

Effect of boost :

[particularly relevant for high energy beams]

| J.P. | Lans | berg ( | IPNO) |
|------|------|--------|-------|
|------|------|--------|-------|

FT@(HL)LHC

September 6, 2019 6 / 22

#### **Energy range similar to RHIC**

7 TeV proton beam on a fixed target

| <b>c.m.s. energy:</b> $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$         | Rapidity shift:                            | 115 GeV         |
|-----------------------------------------------------------------------------------|--------------------------------------------|-----------------|
| <b>Boost:</b> $\gamma = \sqrt{s} / (2m_N) \approx 60$                             | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ | @               |
| 2.76 TeV Pb beam on a fixed target                                                |                                            |                 |
| <b>c.m.s. energy:</b> $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ |                                            | ∯ <u>72 GeV</u> |
| <b>Boost:</b> $\gamma \approx 40$                                                 | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ | *               |
|                                                                                   |                                            |                 |

Effect of boost :

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{cms} < 0]$
- The ALICE central barrel becomes an extreme backward detector

#### **Energy range similar to RHIC**

7 TeV proton beam on a fixed target

| Rapidity shift:                            | 115 GeV                                                                                                                                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ |                                                                                                                                              |
|                                            |                                                                                                                                              |
|                                            | 🎪 72 GeV 😸                                                                                                                                   |
| $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ | * 🎄                                                                                                                                          |
|                                            | <b>Rapidity shift:</b><br>$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$<br><b>Rapidity shift:</b><br>$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ |

### Effect of boost :

[particularly relevant for high energy beams]

• • • • • • • • • • • •

• LHCb and the ALICE muon arm become backward detectors

 $[y_{cms} < 0]$ 

- The ALICE central barrel becomes an extreme backward detector
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers

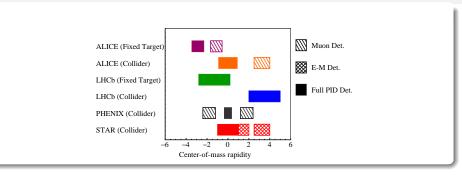
half of the backward region for most probes  $[-1 < x_F < 0]$ 

#### **Energy range similar to RHIC**

7 TeV proton beam on a fixed target

| <b>c.m.s. energy:</b> $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$  | Rapidity shift:                            | 115 GeV    |
|----------------------------------------------------------------------------|--------------------------------------------|------------|
| <b>Boost:</b> $\gamma = \sqrt{s} / (2m_N) \approx 60$                      | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ | &          |
| 2.76 TeV Pb beam on a fixed target                                         |                                            |            |
| c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ |                                            | 🎪 72 GeV 🎂 |
| <b>Boost:</b> $\gamma \approx 40$                                          | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ | *          |
|                                                                            |                                            |            |

### Effect of boost :


[particularly relevant for high energy beams]

- LHCb and the ALICE muon arm become backward detectors
- $[y_{cms} < 0]$
- The ALICE central barrel becomes an extreme backward detector
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers

half of the backward region for most probes  $[-1 < x_F < 0]$ 

• Allows for backward physics up to high *x*<sub>2</sub>

[uncharted for proton-nucleus coll.; most relevant for  $pp^{\uparrow}$  with large  $x^{\uparrow}$  ]



**Effect of boost :** [particularly relevant for high energy beams] • LHCb and the ALICE muon arm become backward detectors  $[\gamma_{cms} < 0]$ 

- The ALICE central barrel becomes an extreme backward detector
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers

half of the backward region for most probes  $[-1 < x_F < 0]$ 

• Allows for backward physics up to high *x*<sub>2</sub>

[uncharted for proton-nucleus coll.; most relevant for  $pp^{\uparrow}$  with large  $x^{\uparrow}$  ]

Internal gas target (with or without storage cell)

크

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux: up to  $5 \times 10^8$  s<sup>-1</sup> & lead flux: up to  $2 \times 10^5$  s<sup>-1</sup>

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: up to  $5 \times 10^8$  s<sup>-1</sup> & lead flux: up to  $2 \times 10^5$  s<sup>-1</sup>
  - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### Bent crystal option: beam line vs split

crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: up to  $5 \times 10^8$  s<sup>-1</sup> & lead flux: up to  $2 \times 10^5$  s<sup>-1</sup>
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

→ Luminosities with internal gas target or crystal-based solutions are not very different

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

#### Bent crystal option: beam line vs split

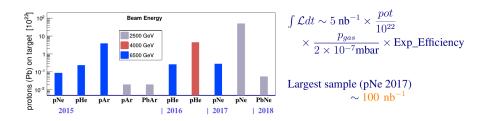
- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux: up to  $5 \times 10^8$  s<sup>-1</sup> & lead flux: up to  $2 \times 10^5$  s<sup>-1</sup>
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- $\rightarrow~$  Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

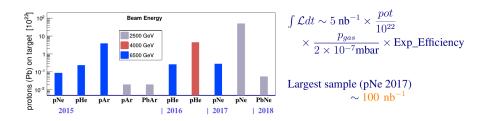
### Bent crystal option: beam line vs split


- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux: up to  $5 \times 10^8$  s<sup>-1</sup> & lead flux: up to  $2 \times 10^5$  s<sup>-1</sup>
  - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- $\rightarrow~$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$  The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow$  The gas targets are the best polarised targets and satisfactory for heavy-ion studies

| J.P. Lansberg | (IPNO) |
|---------------|--------|
|---------------|--------|

FT@(HL)LHC

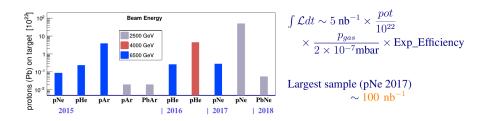
September 6, 2019 8 / 22


イロト イボト イヨト イヨト 二日



Physics results now flowing in

PRL 122 (2019) 132002; PRL 121 (2018) 222001


Limited statistical samples (hundreds of  $J/\psi$  only) and no *pH* baseline yet  $\rightarrow$  The physics reach is still currently very limited



Physics results now flowing in

PRL 122 (2019) 132002; PRL 121 (2018) 222001

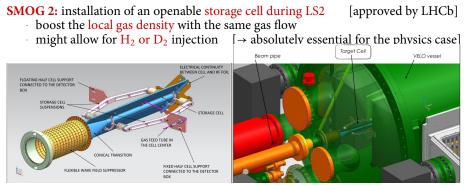
- Limited statistical samples (hundreds of  $J/\psi$  only) and no *pH* baseline yet  $\rightarrow$  The physics reach is still currently very limited
- Approved installation of a storage cell [SMOG2] to increase the target local density



Physics results now flowing in

PRL 122 (2019) 132002; PRL 121 (2018) 222001

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


- Limited statistical samples (hundreds of  $J/\psi$  only) and no *pH* baseline yet  $\rightarrow$  The physics reach is still currently very limited
- Approved installation of a storage cell [SMOG2] to increase the target local density
- Different options discussed for future LHCb upgrades: No decision taken yet

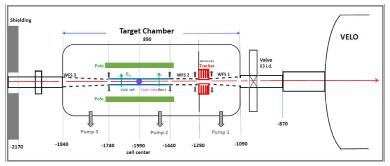
**SMOG 2:** installation of an openable storage cell during LS2 [approved by LHCb]

**SMOG 2:** installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]

・ロト ・ 同ト ・ ヨト ・ ヨト



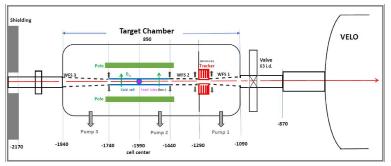

LHCb-PUB-2018-015 & CERN-PBC-Notes-2018-007

FT@(HL)LHC

**SMOG 2:** installation of an openable storage cell during LS2

[approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]



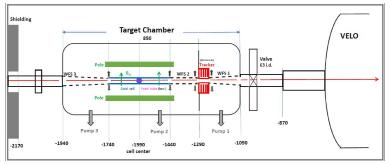

LHCSpin: injection of polarised gases

**SMOG 2:** installation of an openable storage cell during LS2

[approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]




**LHCSpin:** injection of polarised gases

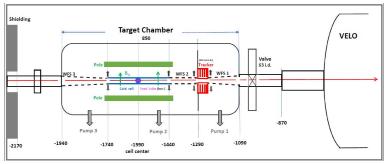
R & D needed for the coating (depolarisation); goal :installation during LS3

**SMOG 2:** installation of an openable storage cell during LS2

[approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]




**LHCSpin:** injection of polarised gases

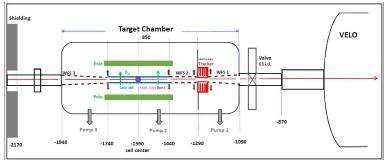
- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical : acceptance toward large  $x^{\dagger}$  lost if too remote

**SMOG 2:** installation of an openable storage cell during LS2

[approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]




**LHCSpin:** injection of polarised gases

- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical : acceptance toward large  $x^{\uparrow}$  lost if too remote
- Gain of an additional tracker yet to be studied

**SMOG 2:** installation of an openable storage cell during LS2

[approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for  $H_2$  or  $D_2$  injection [ $\rightarrow$  absolutely essential for the physics case]

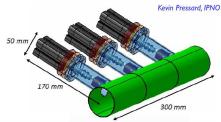


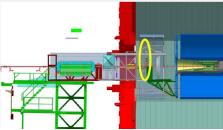
LHCSpin: injection of polarised gases

- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical : acceptance toward large  $x^{\dagger}$  lost if too remote
- Gain of an additional tracker yet to be studied
- A similar solution w/o storage cell like the RHIC H-jet polarimeter is an alternative

イロト イポト イヨト イヨト

æ

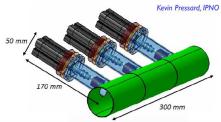

Different options for the FT mode used with ALICE can be considered


3

- Different options for the FT mode used with ALICE can be considered
- · An internal gas target is obviously one

イロト イポト イヨト イヨ

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout

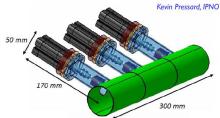


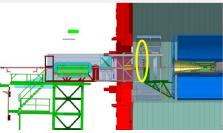



• • • • • • • • • • • • •

FT@(HL)LHC

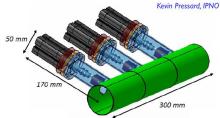
- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration

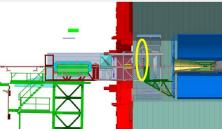



FT@(HL)LHC

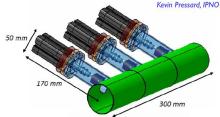
September 6, 2019 10 / 22

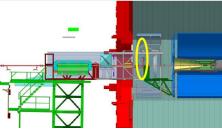

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.






FT@(HL)LHC


- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.
- A gas-target layout will also be studied within STRONG2020






ヘロト ヘヨト ヘヨト ヘヨ

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.
- A gas-target layout will also be studied within STRONG2020
- Gain of an additional tracker and TPC perf. yet to be studied within STRONG2020





[w detector constraints]

- 12

イロト イヨト イヨト イヨト

[w detector constraints]

#### LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'possible'

**Assumption:** Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'SMOG2' baseline for Run3

**Assumption:** Storage cell installed, very parasitic mode  $\mathcal{L}_{p \text{ beam}}$ : 150 pb<sup>-1</sup> on H, 10 pb<sup>-1</sup> on D or 45 pb<sup>-1</sup> on Ar;  $\mathcal{L}_{Pb \text{ beam}}$ : 5 nb<sup>-1</sup> on Ar

#### LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\uparrow}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'SMOG2' baseline for Run3

**Assumption:** Storage cell installed, very parasitic mode  $\mathcal{L}_{p \text{ beam}}$ : 150 pb<sup>-1</sup> on H, 10 pb<sup>-1</sup> on D or 45 pb<sup>-1</sup> on Ar;  $\mathcal{L}_{Pb \text{ beam}}$ : 5 nb<sup>-1</sup> on Ar

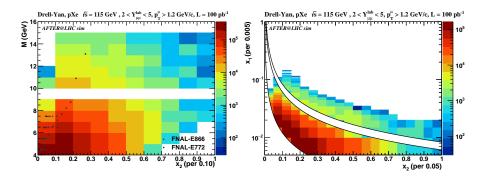
#### ALICE 'possible' from Run4\*

**Assumption:** Readout rate: 50 kHz in PbPb coll. and possibly up to 1 MHz in *pp* and *p*A coll. With internal gas target:  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 250 pb<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 8 nb<sup>-1</sup> With beam splitting and solid target:  $\mathcal{L}_{pW}$ : 0.6 ÷ 6 pb<sup>-1</sup>;  $\mathcal{L}_{PbW}$ : 3 nb<sup>-1</sup>

# Part III

# **Examples of Physics Studies**

J.P. Lansberg (IPNO)

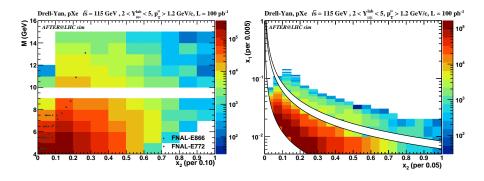

FT@(HL)LHC

September 6, 2019 12 / 22

イロト イポト イヨト イヨ

C. Hadjidakis et al., 1807.00603

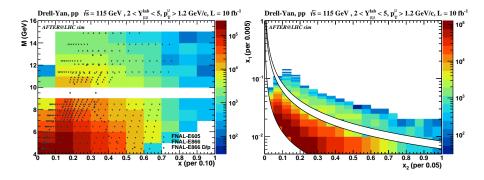
 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).




FT@(HL)LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

J.P. Lansberg (IPNO)


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]

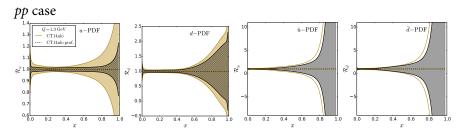


イロト イポト イヨト イヨ

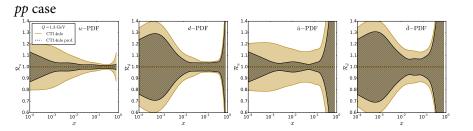
 C. Hadjidakis et al., 1807.00603
 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for pp collisions



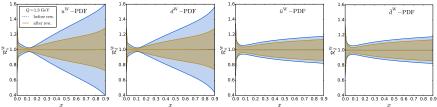

FT@(HL)LHC

 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).


- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released



- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting




- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting



- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties

#### pW case



- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to  $x_2 \rightarrow 1$  [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties
- On-going theory study for  $W^{\pm}$  production accounting for threshold resummation

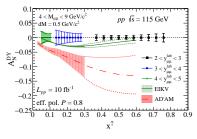
• □ ▶ • • □ ▶ • • □ ▶

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

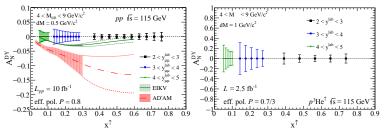
DY pair production on a transversely polarised target


イロト イポト イヨト イヨ

- C. Hadj DY pair production on a transversely polarised target
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !

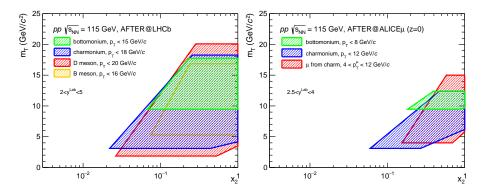
|     | Experiment                                        | colliding                        | beam energy | $\sqrt{s}$ | $x^{\uparrow}$  | L                   | $\mathcal{P}_{\rm eff}$ | $\mathcal{F} / \sum_{i} A_{i}$      |
|-----|---------------------------------------------------|----------------------------------|-------------|------------|-----------------|---------------------|-------------------------|-------------------------------------|
| ••• |                                                   | systems                          | [GeV]       | [GeV]      |                 | $[cm^{-2}s^{-1}]$   |                         | [cm <sup>-2</sup> s <sup>-1</sup> ] |
| ji  | AFTER@LHCb                                        | $pH^{\uparrow}$                  | 7000        | 115        | 0.05÷0.95       | $1 \times 10^{33}$  | 80%                     | $6.4 \times 10^{32}$                |
|     | AFTER@LHCb                                        | $p^{3}\text{He}^{\uparrow}$      | 7000        | 115        | 0.05÷0.95       | $2.5\times10^{32}$  | 23%                     | $1.4 	imes 10^{31}$                 |
|     | $\operatorname{AFTER}@\operatorname{ALICE}_{\mu}$ | $p H^{\uparrow}$                 | 7000        | 115        | $0.1 \div 0.3$  | $2.5 	imes 10^{31}$ | 80%                     | $1.6 	imes 10^{31}$                 |
|     | COMPASS<br>(CERN)                                 | $\pi^- \mathrm{NH}_3^{\uparrow}$ | 190         | 19         | 0.05÷0.55       | $2 \times 10^{33}$  | 14%                     | $4.0 \times 10^{31}$                |
|     | PHENIX/STAR<br>(RHIC)                             | $p^{\uparrow}p^{\uparrow}$       | collider    | 510        | $0.05 \div 0.1$ | $2 \times 10^{32}$  | 50%                     | $5.0 	imes 10^{31}$                 |
|     | E1039 (FNAL)                                      | $pNH_3^{\uparrow}$               | 120         | 15         | $0.1 \div 0.45$ | $4 \times 10^{35}$  | 15%                     | $9.0 	imes 10^{33}$                 |
|     | E1027 (FNAL)                                      | $p^{\uparrow}H_2$                | 120         | 15         | $0.35 \div 0.9$ | $2 \times 10^{35}$  | 60%                     | $7.2 	imes 10^{34}$                 |
|     | NICA (JINR)                                       | $p^{\uparrow}p$                  | collider    | 26         | $0.1 \div 0.8$  | $1 \times 10^{32}$  | 70%                     | $4.9 	imes 10^{31}$                 |
|     | fsPHENIX                                          | $p^{\uparrow}p^{\uparrow}$       | collider    | 200        | $0.1 \div 0.5$  | $8 \times 10^{31}$  | 60%                     | $2.9 	imes 10^{31}$                 |
|     | (RHIC)                                            |                                  |             |            |                 |                     |                         |                                     |
|     | fsPHENIX                                          | $p^{\uparrow}p^{\uparrow}$       | collider    | 510        | $0.05\div0.6$   | $6 \times 10^{32}$  | 50%                     | $1.5 \times 10^{32}$                |
|     | (RHIC)                                            |                                  |             |            |                 |                     |                         |                                     |
|     | PANDA (GSI)                                       | $\bar{p}H^{\uparrow}$            | 15          | 5.5        | $0.2 \div 0.4$  | $2 \times 10^{32}$  | 20%                     | $8.0 	imes 10^{30}$                 |
|     |                                                   |                                  |             |            |                 |                     |                         |                                     |

- C. Had DY pair production on a transversely polarised target
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase


|     | Experiment                                            | colliding<br>systems             | beam energy<br>[GeV] | $\sqrt{s}$<br>[GeV] | x↑              | £<br>[cm <sup>-2</sup> s <sup>-1</sup> ] | $\mathcal{P}_{\rm eff}$ | $\mathcal{F} / \sum_i A_i$<br>[cm <sup>-2</sup> s <sup>-1</sup> ] |
|-----|-------------------------------------------------------|----------------------------------|----------------------|---------------------|-----------------|------------------------------------------|-------------------------|-------------------------------------------------------------------|
| lji | AFTER@LHCb                                            | $pH^{\uparrow}$                  | 7000                 | 115                 | 0.05÷0.95       | $1 \times 10^{33}$                       | 80%                     | $6.4 \times 10^{32}$                                              |
|     | AFTER@LHCb                                            | $p^{3}\text{He}^{\uparrow}$      | 7000                 | 115                 | 0.05÷0.95       | $2.5 \times 10^{32}$                     | 23%                     | $1.4 	imes 10^{31}$                                               |
|     | $\operatorname{AFTER}{}{@\operatorname{ALICE}_{\mu}}$ | $p H^{\uparrow}$                 | 7000                 | 115                 | $0.1 \div 0.3$  | $2.5 \times 10^{31}$                     | 80%                     | $1.6 	imes 10^{31}$                                               |
|     | COMPASS<br>(CERN)                                     | $\pi^- \mathrm{NH}_3^{\uparrow}$ | 190                  | 19                  | 0.05÷0.55       | $2 \times 10^{33}$                       | 14%                     | $4.0 \times 10^{31}$                                              |
|     | PHENIX/STAR<br>(RHIC)                                 | $p^{\uparrow}p^{\uparrow}$       | collider             | 510                 | 0.05 ÷ 0.1      | $2 \times 10^{32}$                       | 50%                     | $5.0 	imes 10^{31}$                                               |
|     | E1039 (FNAL)                                          | $pNH_3^{\uparrow}$               | 120                  | 15                  | $0.1 \div 0.45$ | $4 \times 10^{35}$                       | 15%                     | $9.0 	imes 10^{33}$                                               |
|     | E1027 (FNAL)                                          | $p^{\uparrow}H_2$                | 120                  | 15                  | $0.35 \div 0.9$ | $2 \times 10^{35}$                       | 60%                     | $7.2 \times 10^{34}$                                              |
|     | NICA (JINR)                                           | $p^{\uparrow}p$                  | collider             | 26                  | $0.1 \div 0.8$  | $1 \times 10^{32}$                       | 70%                     | $4.9 	imes 10^{31}$                                               |
|     | fsPHENIX<br>(RHIC)                                    | $p^{\uparrow}p^{\uparrow}$       | collider             | 200                 | 0.1 ÷ 0.5       | $8 \times 10^{31}$                       | 60%                     | $2.9 \times 10^{31}$                                              |
|     | fsPHENIX<br>(RHIC)                                    | $p^{\uparrow}p^{\uparrow}$       | collider             | 510                 | $0.05 \div 0.6$ | $6 \times 10^{32}$                       | 50%                     | $1.5 	imes 10^{32}$                                               |
|     | PANDA (GSI)                                           | $\bar{p}H^{\uparrow}$            | 15                   | 5.5                 | $0.2 \div 0.4$  | $2 \times 10^{32}$                       | 20%                     | $8.0 	imes 10^{30}$                                               |



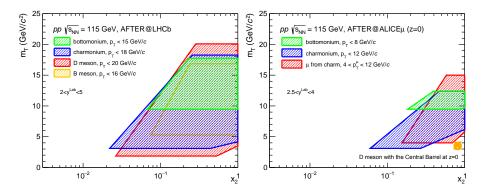
#### 


- DY pair production on a transversely polarised target
- Check the sign change in  $A_N$  DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- <sup>3</sup>He<sup>↑</sup> target → quark Sivers effect in the neutron via DY: unique !

| : 10 <sup>32</sup> |
|--------------------|
| 10 <sup>31</sup>   |
| < 10 <sup>31</sup> |
| × 10 <sup>31</sup> |
|                    |
| (10 <sup>31</sup>  |
|                    |
| × 10 <sup>33</sup> |
| 10 <sup>34</sup>   |
| 10 <sup>31</sup>   |
| 10 <sup>31</sup>   |
|                    |
| : 10 <sup>32</sup> |
|                    |
| : 10 <sup>30</sup> |
|                    |



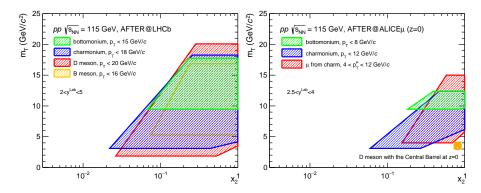
J.P. Lansberg (IPNO)


FT@(HL)LHC



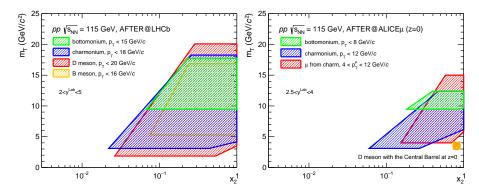
FT@(HL)LHC

September 6, 2019 15 / 22


< ロト < 部ト < 目下</p>



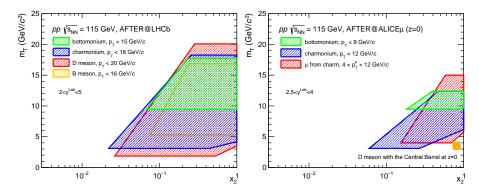
FT@(HL)LHC


September 6, 2019 15 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



• ALICE could extend its coverage with  $\eta_{\text{Lab}} \sim 1 - 2$  for quarkonia into dileptons with one muon in the muon arm and another in the central barrel


Image: A math a math



• ALICE could extend its coverage with  $\eta_{\text{Lab}} \sim 1 - 2$  for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

· Both for LHCb and ALICE, the coverage depends on the target position

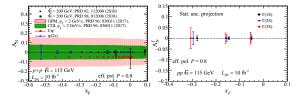
< D > < B > < B > <</p>



- ALICE could extend its coverage with  $\eta_{\text{Lab}} \sim 1 2$  for quarkonia into dileptons with one muon in the muon arm and another in the central barrel
- Both for LHCb and ALICE, the coverage depends on the target position
- Access towards large x crucial : EMC effect, spin and UHE neutrinos

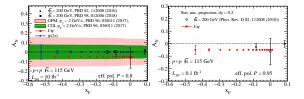
## Quarkonium Projections for spin asymmetries

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017)


3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

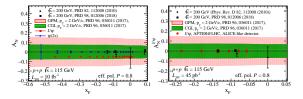
## Quarkonium Projections for spin asymmetries


 $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured

[So far, only  $J/\psi$  by PHENIX with large uncertainties]



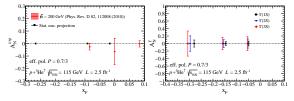
 $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured


[So far, only  $J/\psi$  by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution ]



イロト イポト イヨト イヨト

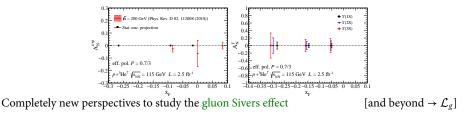
 $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured


[So far, only  $J/\psi$  by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]



*A<sub>N</sub>* for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  c. Hadjidakis *et al.*, 1807.00603; D. Kikola *et al.* Few Body Syst. 58 (2017)

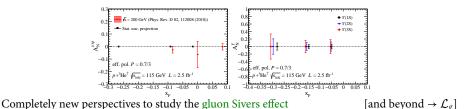
[So far, only  $J/\psi$  by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]


• Also access to polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !

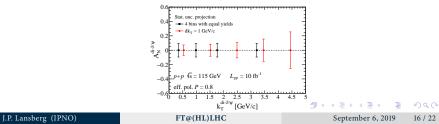


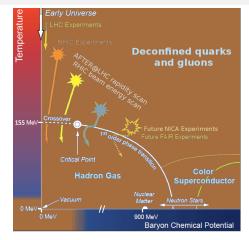
C. Hadjidakis *et al.*, 1807.00603; D. Kikola *et al.* Few Body Syst. 58 (2017)  $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$  can be measured

[So far, only  $J/\psi$  by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]


• Also access to polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !



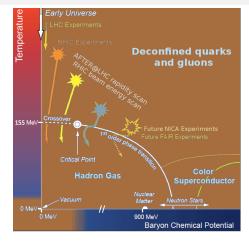

 $A_N$  for all quarkonia  $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$  can be measured


[So far, only  $J/\psi$  by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]

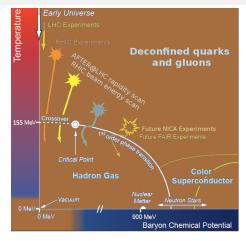
• Also access to polarised neutron (<sup>3</sup>He<sup>†</sup>) at the per cent level for  $J/\psi$ !



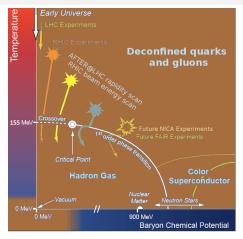
Di- $J/\psi$  allow one to study the  $k_T$  dependence of the gluon Sivers function for the very first time !



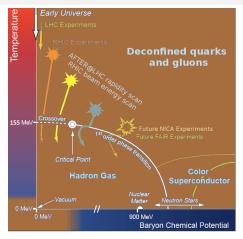




September 6, 2019 17 / 22

イロト イヨト イヨト イヨト

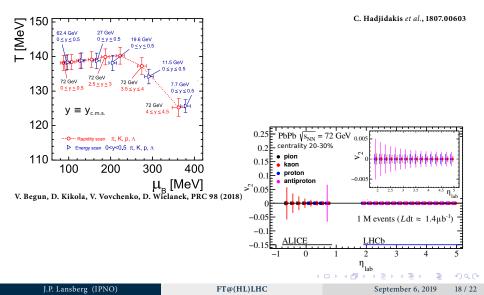

• Energy domain: between SPS and RHIC




- Energy domain: between SPS and RHIC
- Rapidity scan through μ<sub>B</sub> & T with a good PID (LHCb and ALICE)



- Energy domain: between SPS and RHIC
- Rapidity scan through μ<sub>B</sub> & T with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. χ<sub>c,b</sub>, η<sub>c</sub>) and on open charm and beauty




- Energy domain: between SPS and RHIC
- Rapidity scan through μ<sub>B</sub> & T with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states
   (e.g. χ<sub>c,b</sub>, η<sub>c</sub>) and on open charm and beauty
- FoMs for χ<sub>c,b</sub> and η<sub>c</sub> to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations



# Rapidity scan

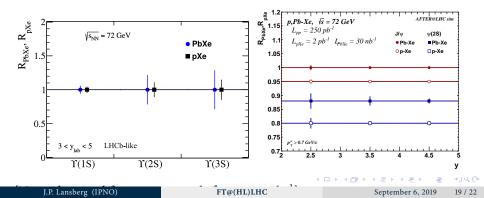
Illustration of the ALICE-LHCb complementarity



C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

• Like for nPDF studies (see later), multiple quarkonium studies are needed


イロト イポト イヨト イヨ

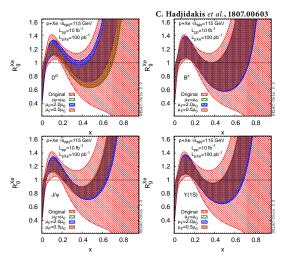
C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

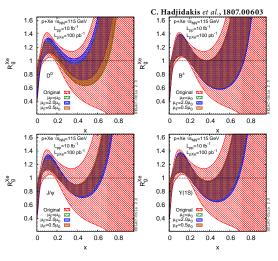
- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline
- Statistical-uncertainty projections (accounting for background subtraction)




C. Hadjidakis et al., 1807.00603

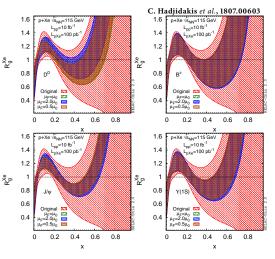
- 2

イロト イヨト イヨト イヨト

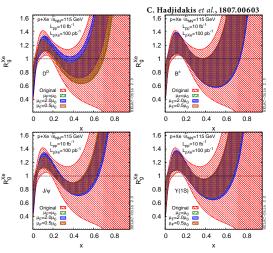

• Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1

(red band) are underestimated; simply no data exist there. See PRL 121 (2018) 052004]

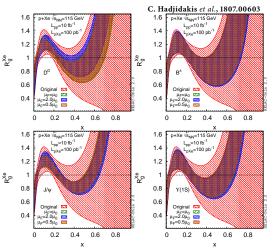



- Extremely promising first projections using Bayesian reweighting
   [esp. since initial nPDF uncertainties for x > 0.1
   (red band) are underestimated; simply no data ex ist there. See PRL 121 (2018) 052004]

   These projections assume that other
- These projections assume that other nuclear effects are under control: different observables are thus needed




- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRL 121 (2018) 052004]
- These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections : yet to be done along the lines of the studies carried out for low-*x* gluon at the LHC


PROSA Coll. EPJC 75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001



- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRL 121 (2018) 052004]
- These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections : yet to be done along the lines of the studies carried out for low-x gluon at the LHC
   PROSA Cell. EPJC 75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001
  - ▶ Contrary to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties



- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRL 121 (2018) 052004]
- These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections : yet to be done along the lines of the studies carried out for low-x gluon at the LHC
   PROSA Cell. EPJC 75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001



Reward: unique constraints on gluon (n)PDFs at high x and low scales

# Part IV

# Conclusions and recommandation

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 21 / 22

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\bullet~$  Three main themes push for a fixed-target program at the LHC

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 34

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies
   new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
   → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode.

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode. *The CERN laboratory should support the efforts of the existing LHC experiments to implement such a program, including specific R&D actions on the LHC.* 

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode. *The CERN laboratory should support the efforts of the existing LHC experiments to implement such a program, including specific R&D actions on the LHC.* 

J.P. Lansberg (IPNO)

# Part V

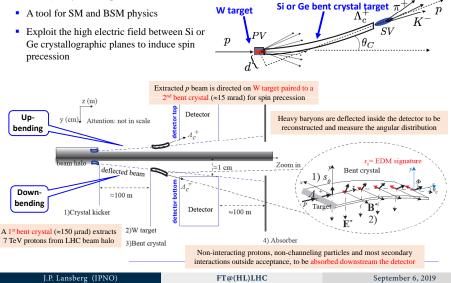
# Backup slides

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 23 / 22

æ


イロト イヨト イヨト イヨト

#### Qualitative comparison

| Characteristics                   | Internal gas target |         |              | Internal solid target | Beam      | Beam       |
|-----------------------------------|---------------------|---------|--------------|-----------------------|-----------|------------|
|                                   | SMOG                | Gas Jet | Storage Cell | with beam halo        | splitting | extraction |
| Run duration                      | *                   | **      | **           | *                     | **        | ***        |
| Parasiticity                      | **                  | **      | **           | *                     | **        | ***        |
| Integrated luminosity             | *                   | ***     | ***          | *                     | **        | ***        |
| Absolute luminosity determination | *                   | **      | **           | *                     | **        | ***        |
| Target versatility                | *                   | **      | **           | *                     | **        | ***        |
| (Effective) target polarisation   | -                   | ***     | **           | -                     | -/*       | *          |
| Use of existing experiment        | ***                 | **      | *            | **                    | **        | -          |
| Civil engineering or R&D          | * * **              | ***     | **           | **                    | **        | *          |
| Cost                              | ***                 | **      | **           | ***                   | **        | *          |
| Implementation time               | ***                 | **      | **           | ***                   | **        | *          |
| High x                            | *                   | ***     | * * **       | *                     | **        | * * **     |
| Spin Physics                      | -                   | ***     | ***          | -                     | -/**      | ***        |
| Heavy-Ion                         | *                   | ***     | ***          | **                    | **        | ****       |

# **Bent crystals proposal**

 Magnetic (MDM) and electric (EDM) dipole moments of short-lived particles, i.e. charm, beauty baryons, τ lepton, have never been measured



25/22

#### CERN Beyond Colliders

# **Bent crystals proposal**

#### **Ongoing activities:**



**LHC Collimation**: layout, simulations, beam extraction, collimators, absorbers



**SELDOM erc** project & **LHCb** experiment: exp. techniques, physics program, preparatory measurements, R&D on long bent crystals

# **UA9 UA9** experiment: bent crystals, channeling, layout, LHC beam extraction, double-crystal scheme studies at SPS, physics studies

Aiming for:

• 1<sup>st</sup> phase installation at IR8 (LHCb) in YETS Run3:

Up to ~10<sup>15</sup> PoT (5 mm W target) Eur. Phys. J. C 77 (2017) 828 JHEP 1708 (2017)

e.g. for  $\Lambda_c^+$ , MDM ~ 10<sup>-3</sup>  $\mu_N$  and EDM ~ 10<sup>-17</sup> e cm

Si crystal (8 cm, 16 mrad) tested on beam at SPS (October 2018, courtesy of A. Mazzolari, INFN-Ferrara)



LHC goniometer used for LHC beam extraction test (courtesy of UA9)



Phys. Lett. B 758 (2016) 129

• 2<sup>nd</sup> phase (high lumi) in dedicated experiment (e.g. IR7 or IR3, longer term) e.g. for  $\tau$  lepton, ~10<sup>17</sup> PoT for g-2~10<sup>-3</sup> (SM) and EDM~10<sup>-17</sup> e cm<sup>ar</sup>

JHEP 1903 (2019) 156 arXiv:1810.06699 (2018)

#### Heavy-Ion Physics

- Estimation of the freeze-out parameters reachable in the AFTER@LHC project by V. Begun, D. Kikola, V. Vovchenko, D. Wielanek, Phys. Rev. C 98 (2018)
- Rapidity scan in heavy ion collisions at \sqrt{snn} = 72 GeV using a viscous hydro + cascade model by I. Karpenko: Acta Phys. Polon. B50 (2019), 141
- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s<sub>NN</sub> = 115 GeV and Pb+p collisions at √s<sub>NN</sub> = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

#### Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- *Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER* By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.
- Single-Transverse-Spin Asymmetries in Exclusive Photo-production of J/ψ in Ultra-Peripheral Collisions in the Fixed-Target Mode at the LHC and in the Collider Mode at RHIC By J.P. Lansberg, L. Massacrier, L. Szymanowski, J. Wagner, Phys.Lett. B793 (2019) 33

#### Hadron structure

- Exclusive vector meson photoproduction in fixed target collisions at the LHC by V.P. Goncalves, M.M. Jaime. Eur.Phys.J. C78 (2018) no.9, 693
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η<sub>c</sub> production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
   By V.P. Goncalves, W.K. Sauter.Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- *Hadronic production of* Ξ<sub>cc</sub> *at a fixed-target experiment at the LHC* By G. Chen *et al.*. Phys.Rev. D89 (2014) 074020.

J.P. Lansberg (IPNO)

#### Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

#### Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

FT@(HL)LHC

September 6, 2019 30 / 22