Probing cold QCD matter with the COMPASS experiment

C-J. Naïm on behalf of the COMPASS Collaboration

CEA/Saclay - LLR/Ecole Polytechnique

Second LHCb Heavy Ion Workshop

September, 5th 2019 - Chia Laguna

Second LHCb Heavy Ion Workshop

Introduction

Why fixed-target experiments?

- \bullet Possible access to large values of $x_{\rm F} \lesssim 0.9$
- Study the A-dependence of nuclear effects
 - Nuclear Parton Distributions Function (nPDF)
 - Energy loss effects

Hard processes to study nuclear medium at COMPASS

- Drell-Yan production
 - $hA \rightarrow \ell^+ \ell^- + X$
 - colorless final state
 - Very well understood in QCD
- Hadron production (mostly charmonium)
 - $hA \rightarrow q/g (\rightarrow h') + X$
 - color in initial and final state
 - Hadron production mechanism not really known

COMPASS apparatus

Beam

- π^- beam at 190 GeV
- $I_{beam}\approx 7\times 10^7~s^{-1}$

Nuclear targets

- Ammonia (NH₃)
- 2 Aluminium (Al²⁷)
- 3 Tungsten (W¹⁸⁴)

Physics data taken

- ~ 4 months in 2015: high statistics for Drell-Yan (~ 30 000 events) and J/ψ (~ 10⁶ events) in W target
- $\bullet \sim$ 5 months in 2018: ongoing analysis

COMPASS acceptance

- Large angular acceptance: $8 < \theta$ (mrad) <160
- Large kinematics acceptance in Drell-Yan region [4.3-8.5] GeV

Access to large values of $x_{\pi} \lesssim 0.9$

Invariant mass distribution at COMPASS

- Drell-Yan in [4.3-8.5] GeV: low signal but less than 4% of background
- J/ψ peak with a good signal/background ratio

At COMPASS, it is possible to study these two processes

A-dependence study in fixed-target experiments

An overview (non-exhaustive !) of nuclear dependence studies

Exp.	Beam	\sqrt{s} (GeV)	Process	А
E906	р	15	DY	C, Fe, W
COMPASS	π^{-}	18.9	DY	NH3, Al, W
			J/ψ	NH3, Al, W
NA3	р	19.4	J/ψ	H, Pt
	π^{-}	16.7/19.4/22.9		
	π^+	19.4		
	π^{-}	16.7/19.4/22.9	DY	H, Pt
NA10	π^{-}	16.2/23.1	DY	D, W
		23.1	J/ψ	D, W
E772	р	38.7	DY	Ca, Fe, W
E866	р	38.7	DY	Be, Fe, W
			J/ψ	Be, Fe, W

Why study A-dependence with a pion beam?

Pion-nucleus collisions

Pion-nucleus (πA) collisions

$$\frac{\mathrm{d}\sigma_{\pi\mathbf{A}}}{\mathrm{d}x_{\mathsf{F}}\mathrm{d}Q} \approx \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\pi}\left(x_{1}, Q^{2}\right) \int \mathrm{d}x_{2} f_{j}^{\mathbf{A}}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1}, x_{2}, Q^{2}\right)}{\mathrm{d}x_{\mathsf{F}}\mathrm{d}Q}$$

- $\hat{\sigma}_{ij}$ partonic cross section calculable in perturbation theory
- $\bullet \ x_1, \, x_2$: fraction of momentum carried by the parton in hadron
- *f_{i,j}* Parton Distribution Function (PDF) : universal non perturbative QCD object

A-dependence of Drell-Yan procerss

Pion-nucleus (πA) collisions

$$\frac{\mathrm{d}\sigma_{\pi\mathbf{A}}}{\mathrm{d}x_{\mathsf{F}}\mathrm{d}Q} \approx \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\pi}\left(x_{1}, Q^{2}\right) \int \mathrm{d}x_{2} f_{j}^{\mathbf{A}}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1}, x_{2}, Q^{2}\right)}{\mathrm{d}x_{\mathsf{F}}\mathrm{d}Q}$$

• Probing PDF in nuclei (assuming no nuclear effects)

$$f_j^A = Zf_j^p + (A - Z)f_j^n$$
$$d\sigma_{\pi A} = Zd\sigma_{\pi p} + (A - Z)d\sigma_{\pi n}$$

• At large $x_{\rm F} \sim x_1$, we investigate nuclear effects via

$$R_{\pi^{-}\mathrm{A}} \equiv \frac{1}{A} \frac{\mathsf{d}\sigma_{\pi^{-}\mathrm{A}}}{\mathsf{d}\sigma_{\pi^{-}\mathrm{p}}} \simeq \frac{4\boldsymbol{u}^{A}\left(\boldsymbol{x}_{2}\right) + \bar{d}^{A}\left(\boldsymbol{x}_{2}\right)}{4\boldsymbol{u}^{p}\left(\boldsymbol{x}_{2}\right) + \bar{d}^{p}\left(\boldsymbol{x}_{2}\right)}$$

Probing of valence u quark distribution from nuclear target

Nuclear Parton Distribution Functions (nPDF)

- Image EMC effect discovered in 1983 in DIS on nuclear targets
 PDF is modified in nuclei : f_i^{p/A} ≠ f_i^p
- **3** nPDF ratio $R_j^A = f_j^{p/A}/f_j^p$ via a global fit assumed to be universal

COMPASS data probe anti-shadowing and EMC regions

Nuclear Parton Distribution Functions (nPDF)

- $R_j^A = f_j^{p/A}/f_j^p$ parameterization depends on data used
- EPSS16 nPDF supersedes the previous EPS09 analysis including neutrino and LHC data

	EPS09	DSSZ	nCTEQ	EPPS16
e-DIS	\checkmark	\checkmark	\checkmark	\checkmark
ν -DIS		\checkmark		\checkmark
Drell-Yan pA	\checkmark	\checkmark	\checkmark	\checkmark
RHIC hadrons	\checkmark	\checkmark	\checkmark	\checkmark
LHC data				\checkmark
Drell-Yan π A				\checkmark

Flavor decomposition			\checkmark	\checkmark
Proton PDF	CTEQ6.1	MSTW2008		CT14

What can the new measurements from COMPASS bring?

Valence nPDF from nCTEQ and EPS09

W nuclei (A=184) from nCTEQ and EPS09 groups

nCTEQ: global fit of f^{p/A} predicts EMC effect R^W_{uv} ≤ 0.8
EPS09: global fit of R^A_j = f^{p/A}/f^p predicts smaller EMC effect

Valence nPDF from EPPS16

W nuclei (A=184) from EPPS16 group

• $R_j^A = f^{p/A}/f^p$ from global fit • $Z^0/W^{+/-}$ data from LHC • $u\bar{d} \rightarrow W^+$ • $d\bar{u} \rightarrow W^$ constrain $10^{-3} \lesssim x \lesssim 10^{-1}$

→ To take into account flavor dependence from LHC, 5 more free parameters compared to EPS09 \rightarrow Larger error band compared to previous analysis from EPS09

COMPASS Drell-Yan data will further constrain anti-shadowing and EMC regions for uv quark

Energy loss effects

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

Can affect differently hard processes:

- $\textcircled{\ } \textbf{Drell-Yan process: } hA \rightarrow \ell^+\ell^- + X$
 - Initial state radiation
- **2** Hadron production: $hA \rightarrow q/g(\rightarrow h') + X$
 - Initial state radiation
 - Final state radiation
 - Interferences initial/final state radiation

• Energy loss in initial or final state (small formation time $t_f \lesssim L$)

 $\langle \epsilon \rangle_{\rm LPM} \propto \alpha_s \hat{q} L^2$

 $hA \rightarrow \ell^+ \ell^- + X$ (Drell-Yan)

• Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle\epsilon
angle_{
m coherent}\propto\sqrt{\hat{q}L}/M\cdot E{\gg}\langle\epsilon
angle_{
m LPM}$

 $hA \rightarrow [Q\bar{Q}(g)]_8 + X$ (Quarkonium)

Transport coefficient : the scattering properties of the medium

$$\hat{q}_g(x) = \frac{4\pi^2 \alpha_s(\hat{q}L)N_c}{N_c^2 - 1} \rho x G(x, \hat{q}L)$$

2 different energy loss dynamics but the same transport coefficient

Cold nuclear matter effects in Drell-Yan data

Energy loss prediction for Drell-Yan data - Arleo et al (2019)

• Energy loss plays a key role in Drell-Yan data at all x_F

• Important suppression at $x_{\rm F} \sim 0.7$ due to energy loss

COMPASS can constrain energy loss effect

What can COMPASS Drell-Yan data bring?

Drell-Yan kinematics distributions at COMPASS

- Large acceptance up to $x_{\rm F} \lesssim 0.9$
- Probing anti-shadowing and EMC effect with good statistics
- \bullet Access large $x_F \sim 0.7$ where energy loss effects dominate

What can COMPASS Drell-Yan data bring?

Uncertainties projection of Drell-Yan cross section ratios

- In red, uncertainties projection only for 2015 data
- In black, uncertainties projection for 2015 and 2018 data

A-dependence of J/ψ in pion collisions

- J/ψ production in $\pi {\bf A}$ collisions more delicate due to:
 - Ignorance about production model
 - \rightarrow but nuclear dependence depends negligibly on the production model
 - Color charge in initial and final states
 - \rightarrow sensitive to coherent energy loss
 - (a) two possible channels $q\bar{q}$ and gg at leading order:

At large $x_{
m F} \sim x_{
m I}$, J/ψ cross section is dominated by valence quark from π^-

$$R_{\pi^{-}A}^{J/\psi} \equiv \frac{1}{A} \frac{\mathsf{d}\sigma_{\pi^{-}A}}{\mathsf{d}\sigma_{\pi^{-}p}} \simeq \frac{u^{A}(x_{2}) + \overline{d}^{A}(x_{2})}{u^{p}(x_{2}) + \overline{d}^{p}(x_{2})}$$

Probing of quark distributions from nuclear target

J/ψ production in pion collisions

But at $0 \lesssim x_{\rm F} \ll 1$, the situation is more complex:

• the sub-processes $q\bar{q}$ and gg depend on the pion PDF

$$\sigma^{J/\psi} = \sigma_{gg} + \sigma_{\overline{q}q}$$

- the last pion PDF from JAM is more constraint at small $x_{\pi} \sim 10^{-3}$ thanks to leading neutron electroproduction from HERA
- the gluon distribution changes significantly between GRV and JAM

$\pi^- \; PDF$	$\langle x_{\pi} \rangle_{g}$	$\langle x_{\pi} \rangle_{v}$	$\langle x_{\pi} \rangle_{s}$
GRV	0.45	0.36	0.19
JAM	0.37	0.45	0.18

What is the impact on the J/ψ absolute cross section calculation ?

J/ψ production in pion collisions

Color Evaporation Model (CEM) calculation at leading order

• GRV gives gg dominant at $0 \lesssim x_{\rm F} \lesssim 0.8$

Unknown initial state

• JAM gives $q\bar{q}$ dominant at all x_F

Need to study absolute cross sections to constrain nPDF

Suppression observed in J/ψ data

Energy loss dominant effect in the J/ψ data - Arleo et al (2012)

Important suppression at large x_F explained by energy loss effect
 Different suppression for p and π beam at the same energy

Energy loss effects on J/ψ production

Factorisation breaking observed in J/ψ data - Arleo et al (2019)

- No scaling as a function of the x₂ momentum fraction
- Energy loss effect more important than nPDF effect

Contradict results to expectations from nPDF

COMPASS, new precise measurements from J/ψ data

COMPASS can

- access large values of $x_{
 m F} \lesssim 0.9$
- extract the A-dependence using 2 nuclear targets (Al and W)
- have more statistics compared to NA3 (limited because of statistics on proton target)

Exp.	Proj.	Beam (GeV)	А	В
NA3	π^{-}	200	H (3000)	Pt (131000)
COMPASS	π^{-}	190	$\rm NH_{3}~(\sim 10^{6})$	W ($\sim 10^{6}$)

• further constrain the transport properties with statistics never reached at this beam energy with pions

Ongoing analysis ...

COMPASS++/AMBER proposal

The story of fixed target experiment at CERN is not finished (hopefully!) **2022-2024**: COMPASS++/AMBER proposal - Adams et al (2019)

- $\bullet~{\rm Use}~\pi^+$ and $\pi^-~{\rm beams}$ of W and C nuclear targets at 190 GeV
- Good opportunity to study nuclear matter

Drell-Yan opportunity

- access to the valence d quarks of nuclei with π^+ beam
- \mathbf{J}/ψ opportunity
 - J/ψ on C target can shed light on the production model

Conclusion

A-dependence study at COMPASS experiment

- High statistics of J/ψ and DY events on 3 nuclear targets
- Access large values of $x_{
 m F} \lesssim 0.9$
- Good place to study cold nuclear effects to constrain nPDF and medium transport properties

Drell-Yan data can give a constraint

- on valence u quark nPDF in anti-shadowing and EMC regions
- on energy loss effect at large $x_{\rm F} \sim 0.7$
- ${\rm J}/\psi$ data
 - can shed light on the production model and the initial partonic state
 - extract the transport properties of nuclear matter and compare them with those of DY