

Hengne Li (South China Normal University) on behalf of the LHCb collaboration

Hengne Li, 4-6 September 2019

Physics Motivation for the EW probes

- * Electroweak bosons are unmodified by the hot and dense medium created in nucleus–nucleus collisions,
- * Their leptonic decays pass through the medium without being affected by the strong interaction.
- * Therefore, electroweak boson productions well "conserved" the initial conditions of the collisions, can be:
 - * used to probe (cold) nuclear effects and constraint nPDFs for Bjorken-x from ~10⁻⁴ to 1 at Q² ~ 10⁴ GeV²
 - * and can be used as a calibration of the nuclear modification factor of other processes:

$$Z_{AA} = \frac{R_{AA}(X)}{R_{AA}(EW)} = \frac{N_{Pb+Pb}^{X}}{\sigma_{Pb+Pb}^{X}} \times \frac{\sigma_{Pb+Pb}^{EW}}{N_{Pb+Pb}^{EW}}$$

Hengne Li, 4-6 September 2019

physics studies.

Event 21079095 Run 217709 Thu, 08 Nov 2018 22:56:35

Event display from the first lead-lead LHC collisions in 2018

LHCb provides unique datasets for Heavy Ion

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

- * LHCb is the only detector fully instrumented in forward region
- * Unique kinematic coverage

 $2 < \eta < 5$

* A high precision device, down to very low-p_T, excellent particle ID, precision vertex reconstruction and tracking.

Vertex Detector reconstruct vertices decay time resolution: 45 fs **Impact Parameter** resolution: 20 µm

> Dipole Magnet bending power: 4 Tm

Hengne Li, 4-6 September 2019

The LHCb detector is special

Calorimeters

energy measurement e/γ identification $\Delta E / E = 1 \% \oplus 10 \% / \sqrt{E} (GeV)$

RICH detectors $K/\pi/p$ separation ε(K→K) ~ 95 %, mis-ID $\varepsilon(\pi \rightarrow K) \sim 5\%$

> Tracking system momentum resolution $\Delta p/p = 0.5\% - 1.0\%$ $(5 \, \text{GeV} / \text{c} - 100 \, \text{GeV} / \text{c})$

Muon system µ identification ε(µ→µ) ~ 97 %,

LHCb running modes and kinematic coverage

Both the collider mode and fixed-target mode running at the same time:

scales

Hengne Li, 4-6 September 2019

* Colliding beam mode (pPb and PbPb):

* Fixed Target mode (SMOG):

* √s_{NN}: 69-110 GeV

$$\int \mathcal{L}dt \sim 5 \text{nb}^{-1} \times \frac{(protons \ on \ target)}{10^{22}} \\ \times \frac{p_{gas}}{2 \times 10^{-7} \text{mbar}} \times \text{Exp_efficiency}$$

Data samples

2016	2015	2017	2018	
6 TeV	$5.02 { m TeV}$	$5.02 { m TeV}$	$5.02 { m TeV}$	
Pbp	PbPb	XeXe	PbPb	
$1 20.8 \text{ nb}^{-1}$	$10 \ \mu {\rm b}^{-1}$	$0.4 \ \mu { m b}^{-1}$	$\sim 210 \ \mu \mathrm{b}^{-1}$	

Setups for proton-ion collisions

- frame coverage 2.0 < *y* < 4.5
- * Common range for the measurements: $2.5 < |y^*| < 4.0$

Hengne Li, 4-6 September 2019

***** Forward production:

- * Center of mass rapidity coverage: $1.5 < y^* < 4.0$
- * $L = 13.5 \text{ nb}^{-1}$
- ***** Backward production:
 - * Center of mass rapidity coverage: $-5.0 < y^* < -2.5$
 - * $L = 20.8 \text{ nb}^{-1}$

* Rapidity coverage in center of mass frame considers a rapidity shift of about 0.47 w.r.t. the lab

- *5 TeV pPb Z boson production [JHEP09(2014)030]
- *8 TeV pPb Z boson production [Work in progress, only projection is shown]
- * Projections of pPb Drell-Yan production at Run 3 and 4: [LHCb-CONF-2018-005]

Hengne Li, 4-6 September 2019

- * 5 TeV pPb (2013 dataset) Z boson production
- * Integrated luminosity: forward $(1.099 \pm 0.021 \text{ nb}^{-1})$ / backward $(0.521 \pm 0.011 \text{ nb}^{-1})$
- * Yields: backward (4 events) / forward (11 events)

Hengne Li, 4-6 September 2019

[JHEP09(2014)030]

* cross-sections in acceptance: $60 < m_{\mu+\mu-} < 120 \text{ GeV},$ $p_{T}(\mu^{\pm})>20GeV,$ $2.0 < \eta(\mu^{\pm}) < 4.5$

- * Results:
 - * Forward:

 $\sigma_{Z \to \mu^+ \mu^-}$ (fwd) = $13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2 (syst.) nb

* Backward: $\sigma_{Z \to \mu^+ \mu^-}$ (bwd) = 10.7^{+8.4}_{-5.1} (stat.) ± 1.0 (syst.) nb

Compare with other experiments

- * Backward:
 - * LHCb, CMS and ATLAS : theory prediction below data measurement
- * ALICE: good agreement, but data error bar is huge. Hengne Li, 4-6 September 2019

Need higher precision!

* 8 TeV pPb (2016 dataset) Z boson production (expected to be ready for QM 2019) * Integrated luminosity: forward (12.18 \pm 0.32 nb⁻¹) / backward(18.58 \pm 0.46 nb⁻¹)

Plots are confidential on this page!

Hengne Li, 4-6 September 2019

not efficiency corrected.

* Projection based on 2013 5 TeV results

Central values: FEWZ NNLO + EEPS16 nPDFs

Projected uncertainties:

- forward: 4.7/sqrt(12.18/1.099) = 1.41 nb
- backward: 6.75/sqrt(18.58/0.521) = 1.13 nb

much higher statistics, higher precision!

Hengne Li, 4-6 September 2019

With the 2016 8 TeV dataset higher precision, it would be interesting to see if measured value is still higher than the theory prediction!

Hengne Li, 4-6 September 2019

Projection of Drell-Yan R_{pPb} to Run 3 and 4

- With high statistics in Run 3 and 4, a full DY mass spectrum can be used to constraint the nPDFs,
- esp. gluon nPDFs at small Bjorken-x with Q² down to 10 GeV².
- * gluon saturation could be observed
- * a reference measurement wrt heavy flavor productions
- * heavy quark production can be used to constraint gluon nPDFs
- but can be heavily modified by • energy loss

Hengne Li, 4-6 September 2019

Projection of DY R

- * Projection assumes (HL-LHC yellow report WG5):
 - * sqrt(sNN) = 8.8 TeV
 - * pPb L = 500 nb⁻¹ in total (250 nb⁻¹ for pPb and Pbp eac
 - * pp reference $L = 104 \text{ pb}^{-1}$
- * Projection based on Run 1 pp measurement:
 - * yields ~ 4.6k forward Z, and 2k backward Z.
- * Projected Central values take:
 - **EPPS 16 nPDF at NNLO** *

What else can we do at LHCb?

*How about W at pPb?

- *Yes, we can do it. One just need backgrounds + a fit using muon
- ***W cross-section is O(10) times la**
- *Projections:

*2013 5 TeV: >100 W bosons *2015 7 TeV: > 3k W bosons

What else can we do at LHCb?

*How about W/Z at PbPb?

*Possible, limited by statistics so far:

	2013		2016		2015	2017	2018
$\sqrt{s_{NN}}$	5.02 TeV		$8.16 { m TeV}$		$5.02 { m TeV}$	$5.02 { m TeV}$	$5.02 { m TeV}$
	pPb	Pbp	pPb	Pbp	PbPb	XeXe	PbPb
L	1.1 nb^{-1}	0.5 nb^{-1}	13.6 nb^{-1}	20.8 nb^{-1}	$10 \ \mu {\rm b}^{-1}$	$0.4 \ \mu { m b}^{-1}$	$\sim 210 \ \mu \mathrm{b}^{-1}$

*Projections based on 2013 pPb Z production results: *2015 PbPb: several Z bosons, < tens W boson *2018 PbPb: tens Z bosons, hundreds W bosons

Hengne Li, 4-6 September 2019

Conclusion and outlook

- * LHCb provides a unique opportunity to probe the cold nuclear matter effects using W/Z boson production
- * pPb->Z boson production at 5 TeV is published
- * pPb->Z boson production at 8 TeV is expected to be public for QM 2019 * pPb->W boson production measurement is under proposal
- * Projection of pPb DY production to Run 3 and 4 shows a chance to probe low Bjorken-x at low Q² (not only Q² at WZ mass scale)
- * Expecting to have more PbPb data to perform

