

European Research Council Established by the European Commission

Benjamin Audurier - 2nd IFT workshop - Chia, 5 sept. 2019

LHCb Overview and future upgrades in heavy-ion collisions

upgrates in neavy-ton comstons

Grant funded by the Exploring Matter ERC Consolidator grant number 647 390

LHCb today II. LHCb Upgrade I III.LHCb Upgrade II

LHCb today (technically yesterday)

The LHCb detector

<u>10.1142/S0217751X15300227</u>

2018 data campaign

Status in PbPb collisions

- - - Centrality estimated with the calorimeter.
 - Current tracking algorithm efficient up to ~50%.
 - **Physics studies limited to ~50% less central events.**

VELO saturates in central collisions :

Tracking in LHCb

- * Many types of tracks in LHCb, the most important ones are
 - Long tracks.
 - Downstream tracks
- * Tracking steps :
 - Finding a track : Forward Tracking algorithm.
 - Combine VELO seeds with hits in the T-stations
 - Match VELO tracks and seeds from T-stations
 - Fitting a track : Kalman filter.

Tracking in PbPb

Tracking algorithm tuned for pp

- Velo Tracks killed in high-occupancy regimes _
- Long Tracks reconstruction drops before that ! _

Examples on J/ψ reconstruction efficiencies :

Publication since QM 2018

Reference	Subjed
JHEP11 (2018) 194	Y in pl
JHEP02 (2019) 102	$\Lambda_{\sf c}$ in p
PRD99 (2019) 052011	Open b
PRL121 (2018) 222001	Antipro
PRL122 (2019) 132002	Charm
LHCB-PUB-2018-015	Prospe
LHCB-CONF-2018-005	Projec

* **Good grasp** on **fixed-target** and **p-Pb** data samples.

- * Many other results to come (see other LHCb talk during the workshop !).
- * **Main difficulties** : tracking in high-occupancy regime.

Pb 8 TeV oPb 5 TeV beauty in pPb 8 TeV oton in pHe 110 GeV in pHe 87 GeV and pAr 110 GeV ects for fixed target tion for pPb analyses in Run 3/4

LHCb Upgrade I 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2021 ••• Run 5 Run 4 LS4

LHC		Run 3		LS3
HL-LHC			LS3	
Jpgrad	grade Ia Upgrade Il			Upgrade Ib

Upgrade II

Requirements for Run 3 - Run 4

New electronics for muon and calorimeter systems

[CERN-LHCC-2012-007]

- M4 M5 20m
 - Upgrade based on pp collision requirements :
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu \approx 5$
 - Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.
 - Replace the entire tracking system.

LHCb trigger in run II and Turbo

Tracking system: Vertex Locator (VELO)

- * Silicon pixel detector, 41 M 55 x 55 μ m² pixels.
- * Closest pixels at 5.1 mm from the beam line.
- * Aluminium foil to protect the Velo without interfering with the beam.
- * Sensors to be kept $< -20^{\circ}$ C
- * **Total data rate** : 2.8 Tb/s

Tracking system: Upstream Tracker (UT)

- * 4 stations with x-u-v-x layers of silicon micro strip detectors.
 - Sensors with 512 or 1024 strips (4 different types).
 - ➡ 68 staves / 968 sensors.
- * Replace the TT system.

Tracking system: Scintillating fibre tracker (SciFi)

- ~10000 km of scintillating fibres arranged in 6 layers with silicon photo-multipliers (SiPM) readout.
 - 3 stations.
 - 4 detection layers per station arranges in x-u-v-x configuration per stations.
 - \rightarrow 10 modules of 2x4 mats.

LHCb fixed target program evolution

- * SMOG 2 (<u>TDR</u>): Standalone gas confinement cell covering z € [-500;-300] mm :
 - more gas targets and much higher luminosity.
 - simultaneous pp-pSMOG data-taking.
 - would allow many nice early measurements.

SMOG2 cell

Run 3 - Run 4 scenarios

Year	Systems, $\sqrt{s_{NN}}$	Time	L_{int}
2021	Pb–Pb 5.5 TeV	3 weeks	$2.3~\mathrm{nb}$
	pp 5.5 TeV	1 week	$3~{ m pb}^-$
2022	Pb-Pb 5.5 TeV	5 weeks	3.9 nł
	0–0, p–0	1 week	$500~\mu$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pł
	pp 8.8 TeV	few days	$1.5~{ m pl}$
2027	Pb–Pb 5.5 TeV	5 weeks	$3.8~\mathrm{nl}$
	pp 5.5 TeV	1 week	$3~{ m pb}^-$
2028	p–Pb 8.8 TeV	3 weeks	$0.6~{ m pl}$
	pp 8.8 TeV	few days	$1.5~{ m pl}$
2029	Pb–Pb 5.5 TeV	4 weeks	3 nb^-
Run-5	Intermediate AA	11 weeks	e.g. A
	pp reference	1 week	

* Scenarios taken from the <u>Yellow report</u>.

$$p^{-1}$$

(ALICE), 300 pb⁻¹ (ATLAS, CMS), 25 pb⁻¹ (LHCb)
 p^{-1}
 p^{-1} and 200 μp^{-1}
 p^{-1} (ATLAS, CMS), 0.3 pb⁻¹ (ALICE, LHCb)
 p^{-1} (ALICE), 100 pb⁻¹ (ATLAS, CMS, LHCb)
 p^{-1}
(ALICE), 300 pb⁻¹ (ATLAS, CMS), 25 pb⁻¹ (LHCb)
 p^{-1} (ATLAS, CMS), 0.3 pb⁻¹ (ALICE, LHCb)
 p^{-1} (ALICE), 100 pb⁻¹ (ATLAS, CMS, LHCb)

Ar-Ar 3-9 pb^{-1} (optimal species to be defined)

ort. CERN-LPCC-2018-07

Projection in PbPb Run 3 - Run 4

No saturation up to (at least) ~30% centrality

Projection in PbPb Run 3 - Run 4

Long tracks reconstructed up to (at least) ~30%

Projection in PbPb Run 3 - Run 4

No saturation of SciFi up to (at least) ~30%

 J/ψ reconstructed up to (at least) ~30%

<u>Upgrade I:</u> - 2×10^{33} cm⁻² s⁻¹ - **Pile-up = 5**

b Upgrade II

EoI : CERN-LHCC-2017-003 Physics case : CERN-LHCC-2018-027

> <u>Upgrade II:</u> - $1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ - **Pile-up = 42**

Phase in a nutshell

- * Sub detectors considering timing :
 - Before the magnet :
 - VELO, RICH1
 - After the magnet :
 - TORCH, RICH2, ECAL

Magnet Tracking Station

- * Proposal for tracking station inside the magnet.
 - Increase coverage of upstream tracks.
 - Physics motivations : access to converted photons.
- * Technology:
 - Triangular Extruded Scintillating Bars (same as D0)
 - SiPM arrays adapted to SciFi/PACIFIC readout.
 - Ongoing R&D in LANL.
- **Proposing the installation of a small prototype** inside the magnet during LSIII.

Extended acceptance

LHCb-INT-2019-006

TORCH - Low momentum PID

- * TORCH is a large area time of flight detector that is designed to provide PID in the GeV/c momentum range
 - Considered for use in Upgrade Ib.
 - Exploit prompt production of Cherenkov light in a quartz radiator plate to provide a fast timing signal.
 - Aim for a resolution of 10-15 ps per track
 - A large-scale prototype has been developed.
 - Test-beam ongoing
 - Good separation between between $\pi/K/p$ is possible in 2-10 GeV/c range.

Half-scale demonstrator

- * Mighty tracker : biggest silicon tracker built by LHCb.
 - Upgrade 1B: Inner Tracker + Scifi
 - Limited change to SciFi
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area
 - Rebuild of SciFi + reuse IT
- * Hybrid technology detector, many challenges !
 - Cost -> design choice.
 - Cooling.
 - Mechanical challenges to build the hybrid module.
 - Read-out and electronics.
 - Hardware-based tracking in Run 5?

- * Upgrade II VELO faces significant mechanical challenges
 - huge impact on the design and R&D.
- * Track timing will be crucial
 - PV timing and associations, displaced track trigger etc.
 - Difficult question to address that will impact the design.
 - Other issues : cooling, radiations ...

σ_z (lumi region) $\approx 45 \text{ mm}$ $\sigma_t(\text{lumi region}) \approx 190 \text{ ps}$

Typical B meson flight time ~15ps

Conclusion

- * Lessons learned from run I run II :
 - LHCb fully performant in p-SMOG, p-A and (ultra-) peripheral AA collisions.
 - Main limitations : tracking
- * Expectations for LHCb upgrade I :
 - New tracking detectors + algorithms benefit all HI collisions !
- * LHCb Upgrade II (U2):
 - Physics case available.
 - HI physics conditions (if any) covered by HL-LHC requirements at LHCb.
 - Bright future ahead for the IFT working group !

LHCb could reconstruct particles up to (at least) ~30% centrality without specific tuning !

26