Charge identification analysis with the Δ E-TOF detector prototype

Pisa group

Outline

- Introduction
- Experimental setups
- Results
 - Calibrations
 - Fragmentation analysis 8 degrees
 - Fragmentation analysis 4 degrees
- Conclusions and future plans

Introduction

- Goal today: show the performance of charge identification measurements done with the dE/dx-TOF prototype at CNAO
- Reminder: dE/dx-TOF essential for measuring Z of fragments
 TOF
 - Energy deposition
- * Today: show snapshot of measurements done in 2018
 - * February 2018
 - * Calibration measurements: protons & carbon ions
 - * June 2018
 - * Calibration measurements: carbon ions
 - * Fragmentation measurements: 8 degrees
 - * December 2018
 - * Calibration measurements: carbon ions
 - * Fragmentation measurements: 4 degrees (2 degrees only few events)

Experimental setups

- First tests with 2 bars only, performed at CNAO
- 2 experimental setups

Calibration measurements

- p, C beams, directly shot on bars
- Energies: up to 250 MeV/u (p) and up to 400 MeV/u (C)
- Time and energy resolution and calibration measurements
- Direct charge Z determination
- Comparison with FLUKA MC code (no detector resolution included)

Fragmentation identification

- C beam, 115- 330 MeV/u
- Bars at angle: no primary particles
- First fragment identification measurements
- Comparison with FLUKA MC code (no detector resolution included)

Results: calibration

TOF measurement should be corrected for delays in cables etc.

- From MC simulations get expected TOF
- Plot expectation vs measurement
- Determine offset \rightarrow to
- Different setup used in December, so calibrated separately

Measured charge should be related to energy deposit

- From MC simulations get expected deposit
- Plot expectation vs measurement
- Determine relationship
- Each bar has its own calibration
- Each data-taking (Feb, Jun, Dec) has its own calibration

Results: Energy and TOF resolution

Just a few examples....

Z-plots

Protons, February 2018 (bar 1)

- Bar 1 and bar 2: resolutions in data: sigma(Z)/mu(Z) from $8\% \rightarrow 25\%$
- Non-gaussian shape at higher energies → should use the 'Langaus' function

Z-plots

• Bar 1 and bar 2: resolutions in data: sigma(Z)/mu(Z)from $3\% \rightarrow 5\%$

 $\sigma(Z)/\mu(Z)$ [%]

bar 1

2.66

3.64

3.81

4.35

4.79

Data available: Carbon, 330 MeV/u Event selection: E> 2 MeV in both bars, and fabs(Ebar1-Ebar2)<5 MeV

)

- MC: -Events with >1 hit in one of the bars dirty Z distribution -Experimental setup modeled too approximately
- Data: see Z=1, Z=2 and Z=3, a few events with Z=4 and Z=5
 - Z=6: Primary beam, beam-width not modeled correctly
 - Energy and time calibration not great

Good news!

Scintillator bars ready for GSI!!

Calibration data taken at CNAO

Plans & Conclusions

- * Refine calibration procedure
- Problem to be solved: why MC gives systematically a Z that is too large (seen also by Roberto).
 - * Not seen so pronounced when looking at the truth (crossings)
 - * Will have a detailed look friday with Giuseppe
- * Fragmentation data at 4 and 8 degrees: a few cross checks are still to be done.