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Introduction

There is ample evidence (lattice, Seiberg-Witten, gauge/gravity
correspondence ...) that 4d (Super-)YM theory confines

〈W 〉 = exp−σA

with a string tension σ ∼ Λ2.

QQ
_

Interestingly, in 2d QED/QCD with massive matter the string
tension is given by

σ ∼ me (1− cos(2πQext/Qdyn))

so it vanishes in the limit of massless electrons m → 0. A cloud of
massless electrons can screen an external fractional charge!
A.A., S. Sugimoto, JHEP 1903 (2019) 175.
A.A., Y. Frishman, J. Sonnenschein ,Phys.Rev.Lett. 80 (1998)
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Introduction

This fascinating phenomenon, of confining strings that becomes
tensionless when the electron mass becomes zero, is by now fairly
understood in terms of field theory dynamics.

How can we understand this phenomenon from string theory
viewpoint? how can a fundamental string become tensionless? it is
well known that at weak coupling the F1 tension is given by
σ ∼ gs

α′ .

The purpose of this talk is twofold:

◮ To study the vacuum structure of 2d QED

◮ To learn about string dynamics at strong coupling
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String Theory Realisation

We wish to study 2d QED. A simple realisation of the theory is
given by a system of O1− and an anti D1 brane

O1
−

D1

D1
_

_

The presence of an anti D1 brane near an orientifold plane breaks
supersymmetry. The field theory that lives on this system is an
SO(2) (or U(1)) gauge field, a neutral scalar and a charge 2
electron. The matter content is given by

U(1) charge SO(1, 1) SO(8)

aµ 0 2 1
φI 0 1 8v
ψi
R 2 1+ 8+

ψi
L 2 1− 8−
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String Theory Realisation

The scalar couples to the electron via a Yukawa interaction

SYukawa =

∫

d2x
(

yΓIij φIψ
i†
Rψ

j
L + h.c.

)

As usual, the vev of the scalar - which gives rise to a mass in field
theory, parameterizes the distance between the brane and the
orientifold.

In order to study potential between the brane and the orientifold
we will study the field theory dynamics as a function of the
electron mass.

Let’s start with the massless case.
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Vacuum structure of 2d QED

The action of 2d QED of charge k massless Nf flavours is given by

SQED =

∫

d2x(−
1

4e2
F 2
µν

+ i ψ̄iγ
µ(∂µ + ikAµ)ψ

i )

The theory admits a classical symmetry of the form

Gclassical =
SU(Nf )L × SU(Nf )R × U(1)A/Z2

(ZNf
)L × (ZNf

)R
,

The axial symmetry U(1)A/Z2 is broken by the anomaly, leading to

G =
SU(Nf )L × SU(Nf )R × Z

axial
kNf

(ZNf
)L × (ZNf

)R

Z
axial
kNf

is further broken spontaneously to ZNf
resulting in k-vacua.
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Bosonization and vacuum structure

The bosonized Hamiltonian of the multi-flavour Schwinger model
is given by

H =

∫

dx1
(

2π

Nf

Π2
ϕ
+

Nf

8π
(∂1ϕ)

2 +
e2

8π2
(kNf ϕ− θ)2

)

+ HWZW ,

where exp iϕ is a U(1) and HWZW is the Hamiltonian for the
SU(Nf ) valued field g .
The field g decouples from the dynamics of the U(1). It means
that a condensate 〈g〉 cannot form. This is consistent with the
Coleman-Mermin-Wagner theorem that implies that
SUL(Nf )× SUR(Nf ) cannot be broken spontaneously and a
condensate 〈ψ̄i

Lψ
R
j 〉, with i 6= j cannot form.

Interestingly, 〈exp iNf ϕ〉 6= 0 which corresponds to 〈det ψ̄i
Lψ

R
j 〉 6= 0

is formed.
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Quark condensate

The bosonized Hamiltonian implies

〈θ|e iNf ϕ|θ〉 = e i
θ

k

which, together with the 2π periodicity of θ, gives rise to k vacua
and a spontaneous breaking of the form Z

axial
kNf

→ ZNf
.
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Adding a small quark mass

In the presence of a mass term M0ψ̄jψ
j chiral symmetry is

explicitly broken and a chiral condensate is formed

〈ψ̄jψ
j〉 ∝ e

2
Nf +1M

Nf −1

Nf +1

0 .

Using the relation

∂E

∂M0
= 〈ψ̄jψ

j〉

We can calculate the vacuum energy in the presence of an
external charge, δS = Q

∫

F and without it.
The string tension is given by

σ(Q) = E (θ + 2πQ)− E (θ)
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Back to the string theory setup

We are interested in the vacuum energy of the system as a
function of the distance between the anti D1 and the orientifold, Y

O1
−

D1
_

Y

Y

_
D1

The precise relation between the field theory mass M0 and the
distance Y in the string setup is given by

M0 = yφ =
Y

πα′
. (1)

We can also introduce a RR 0-form background and relate it to
the θ parameter.
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The String Tension

The QCD string tension is related to the difference between the
tension of a (1,−1) D-brane (a bound state of an anti D1 brane
and F1) and a (0,−1) D-brane.
Using the previous results (with Nf = 8) we find at short distances
(Y 2 ≪ α′)

T(1,−1) − T(0,−1) = C
gs

α′

(

Y 2

gsα′

)

8
9

,

This result is in contrast to the behaviour at long distances
(α′ ≪ Y 2)

T(1,−1) − T(0,−1) =
gs

4πα′
,
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Outlook

Several comments are in order:

◮ At long distance (and weak string coupling) we recover the
standard result: the tension is constant. This is similar to
σ ∼ Λ2 in 4d.

◮ At short distance (and strong coupling) the string tension is

∼ Y
16
9 . In particular it vanishes at Y = 0. The QCD string

becomes tensionless and T(1,−1) = T(0,−1).

◮ At strong string coupling the anti D1 tension ∼ g
1
9
s
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