Self-dual (BPS) impurities (background fields)

A new tool for studying of soliton dynamics

Andrzej Wereszczynski

Jagiellonian University, Krakow, Poland

in collaboration with

K. Oles, T. Romanczukiwicz (Jagiellonian University)

C. Adam (Santiago de Compostela)

J. Queiruga (Karlsruhe)

N. Manton (Cambridge)

contents

- self-dual (BPS) models in (1+1) dim
 - trivial moduli space ${\mathcal M}$
- self-dual (BPS) preserving impurity in (1+1) dim
 - spectral structure depends on a position on the moduli space ${\cal M}$
 - no static force between solitons
 - static multi-soliton solutions
 - soliton-mode interactions
- applications
 - interaction of kinks: soliton-mode interaction → spectral walls
 - kink-antikink annihilation → zero static force limit
 - beyond geodesic flow approximation
 - SD impurities in higher dim, cond-mat....

self-dual (BPS) models in (1+1) dim an example and definition

- the canonical scalar model $\phi(x, t)$ in 1+1 dimensions
 - static energy

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \phi_x^2 + U(\phi) \right]$$

U two vacuum potential: $U(\phi_+^{\it V})=0$ and $\phi_+^{\it V}>\phi_-^{\it V}$

topological charge

$$Q = rac{\phi(+\infty) - \phi(-\infty)}{\phi_+^{
u} - \phi_-^{
u}} \in \mathbb{Z}$$

from the conserved topological current: $\partial_{\mu}j^{\mu}=0, j^{\mu}=(\phi_{+}^{\nu}-\phi_{-}^{\nu})^{-1}\epsilon^{\mu\nu}\partial_{\nu}\phi$

- topological solitons = kinks finite energy solutions with nonzero topological charge

- EL

$$\delta E = 0 \quad \Rightarrow \quad \phi_{xx} - U_{\phi} = 0$$

- the canonical scalar model $\phi(x,t)$ in 1+1 dimensions self-dual sector
 - topological bound

$$E = \int_{-\infty}^{\infty} dx \left(\frac{1}{\sqrt{2}} \phi_{x} \pm \sqrt{U} \right)^{2} \mp \sqrt{2} \int_{-\infty}^{\infty} dx \sqrt{U} \phi_{x}$$

$$\geq \sqrt{2} \left| \int_{-\infty}^{\infty} dx \sqrt{U} \phi_{x} \right| = \sqrt{2} \left| \int_{\phi(-\infty)}^{\phi(+\infty)} d\phi \sqrt{U} \right|$$

$$= \sqrt{2} (\phi_{+}^{v} - \phi_{-}^{v}) \left\langle \sqrt{U} \right\rangle |Q|$$

where

$$\left\langle \sqrt{U} \right\rangle = \frac{1}{\phi_+^{\mathsf{v}} - \phi_-^{\mathsf{v}}} \int_{\phi_-^{\mathsf{v}}}^{\phi_+^{\mathsf{v}}} d\phi \sqrt{U} \equiv \frac{1}{\phi_+^{\mathsf{v}} - \phi_-^{\mathsf{v}}} (F(\phi_+^{\mathsf{v}}) - F(\phi_-^{\mathsf{v}}))$$

- Bogomolny eq. - saturation of the bound

$$\frac{1}{\sqrt{2}}\phi_X\pm\sqrt{U}=0$$

- BOG \Rightarrow EL

$$0 = \partial_X \left(\frac{1}{\sqrt{2}} \phi_X \pm \sqrt{U} \right) = \frac{1}{\sqrt{2}} \phi_{XX} \pm \frac{1}{2\sqrt{U}} U_\phi \phi_X = \frac{1}{\sqrt{2}} \left(\phi_{XX} - U_\phi \right)$$

- BOG = zero pressure eq.
- SD sols = lower order sols, saturate the bound ⇒ top. stability energy fixed by asymptotic

BPS-ness = a generic feature in (1+1) dim

trivial moduli space (1 dim target space)
 energy equivalent solutions only in one soliton sector flow on the moduli = translation
 no spectral structure flow on the moduli

kink-(anti)kink scattering = completely non-BPS process

- no moduli space description
- very complicated dynamics static force between solitons interactions between a soliton and internal modes radiation

mixed up.... $\rightarrow K\bar{K}$ scattering in ϕ^4 not explained

the BPS property useless in (1+1) dim

(half of) self-duality preserving defects

- destroying the BPS-ness
 - breaking translational invariance → impurity

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \phi_x^2 + U(\phi) + \phi \sigma(x) \right]$$

 $\sigma(x)$ spatially localized defect

- EL

$$\phi_{XX} - U_{\phi} - \sigma(X) = 0$$

- zero pressure configuration ⇒ EL

$$T^{11} = \frac{1}{2}\phi_X^2 - U(\phi) - \phi\sigma(x) \Rightarrow \phi_X \left(\phi_{XX} - U_\phi - \sigma(x)\right) = \phi\sigma_X$$

the static equation of motion $\Rightarrow \phi \sigma_x = 0$

impurity breaks the self-duality of the static e.o.m. no moduli space

• restoring the BPS-ness with an impurity - self-dual defects

Adam, Wereszczynski PRD (18); Adam, Romanczukiewicz, Wereszczynski JHEP (19)

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \phi_{\chi}^2 + U(\phi) + \frac{2\sigma W(\phi)}{2\sigma \phi_{\chi}} \right] + \int_{-\infty}^{\infty} dx \sigma^2$$

where $U = W^2$

- impurity terms

$$\begin{array}{ll} \sigma(x)W & \to \text{typical impurity coupling} \\ \sigma(x)\phi_x & \to \text{local version of the topological term} \\ & \sigma\phi_x \neq \partial(\sigma\phi) \text{ as } \sigma = \sigma(x) \\ & \sigma^2(x) & \to \text{sets the energy zero, non-dynamical term} \end{array}$$

- unrestricted impurity

$$\sigma(x) \longrightarrow ext{any spatial distribution}$$

- unrestricted potential
- even more possibilities Adam, Queiruga, Wereszczynski JHEP (19)
- → see below: solvable self-dual impurities

- topological bound

$$E = \int_{-\infty}^{\infty} dx \left(\frac{1}{\sqrt{2}} \phi_X + (\sigma + W) \right)^2 - \sqrt{2} \int_{-\infty}^{\infty} dx \phi_X W$$
$$\geq -\int_{-\infty}^{\infty} dx \phi_X \sqrt{2} W = -Q \int_{\phi_-^V}^{\phi_+^V} d\phi \sqrt{2} W$$

- Bogomolny eq. only one!

$$\frac{1}{\sqrt{2}}\phi_X + W + \sigma = 0$$

saturates the bound equivalent to the zero pressure condition

- EL eq. $W = \sqrt{U}$

$$\phi_{xx} - U_{\phi} - \sigma \frac{U_{\phi}}{\sqrt{U}} + \sqrt{2}\sigma_{x} = 0$$

BOG eq. \Rightarrow EL eq.

$$\frac{1}{\sqrt{2}}\phi_{XX}+\sigma_X+\frac{1}{2\sqrt{U}}U_{\phi}\phi_X=0 \ \ \Rightarrow \ \ \phi_{XX}+\sqrt{2}\sigma_X-\frac{U_{\phi}}{\sqrt{U}}(\sigma+\sqrt{U})=0$$

BPS and non-BPS soliton asymmetry

```
non-BPS solitons kink if W=\sqrt{U} solves full EL eq. non-BPS solution interacts with the impurity: attraction or repulsion BPS solitons antikink if W=\sqrt{U} \rightarrow restoration of self-duality in Q=-1 sector solves the BOG eq. static: does not interact with the impurity any position of the BPS antikink w.r.t. the impurity - energetically equivalent lumps \rightarrow restoration of self-duality in Q=0 sector lump - antikink binding energy E_B=0
```

- generalized translation

$$T: \mathsf{BPS} \ni \phi \to \phi_T \in \mathsf{BPS}, \quad E[\phi] = E[\phi_T]$$
 no impurity $\to \phi_T = \phi(x+x_0)$ \to trivial action on the lumps

→ zero mode although the translation inv. broken

- moduli space ${\mathcal M}$

position of the BPS antikink w.r.t. the impurity move on $\mathcal M$ generated by the generalized translation $\mathcal T$ spectral structure depends on a position on $\mathcal M$

leading order dynamics of BPS solitons geodesic motion on $\mathcal M$

-> DW that do not get stuck on impurities

beyond leading order dynamics of BPS solitons

→ mode - BPS soliton interaction

examples, applications and results

spectral wall

role of bound modes in the soliton dynamics

spectral wall

Adam, Oles, Romanczukiewicz, Wereszczynski PRL (19)

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \phi_x^2 + W^2(\phi) + 2\sigma W(\phi) + \sqrt{2}\sigma\phi_x \right] + \int_{-\infty}^{\infty} dx \sigma^2$$

pre-potential $W=(1-\phi^2)/\sqrt{2} \rightarrow \phi^4$ theory kink-form preserving impurity $\sigma=\frac{\alpha}{\cosh^2 x}$

 \rightarrow the energy bound

$$E \geq -\frac{4}{3}Q$$

 \rightarrow no impurity $\alpha = 0$

$$\phi_{k,a} = \pm 4 \tanh(x - x_0)$$

→ impurity structure of static solutions non-BPS kink tanh x BPS antikinks BPS lumps (top. trivial)

lump (Q=0) and BPS anti-kink (Q=-1)

moduli space $\mathcal{M}=\{\phi(x;x_0):x_0\in\mathbb{R},x_0\sim\text{ position of topological }0\}\cong\mathbb{R}$ $E[\phi(x;x_0)]=4/3$ generalized translation $T:x_0\to x_0+a\implies \text{ flow on the moduli space}$

zero order dynamics \rightarrow geodesic flow

interaction of the BPS soliton with the impurity

effortless transition of the BPS solitons through the impurity

interaction of the non-soliton with the impurity

non-effortless transition of the BPS solitons through the impurity

lets excite a mode = beyond the geodesic approximation

- → usual soliton model in (1+1) dim → scattering of solitons force between solitons → deformation of shapes, no static solutions excitation of modes (mutual distance dependent) radiation strong mixing → no analytical, quantitative understanding...a lot of mess
- Strong mixing 7 no analytical, quantitative understanding...a for or mess
- $\rightarrow \text{BPS-impurity model}$

no static force between the BPS soliton and the impurity spectral structure (vibrational modes) depends on a position on the moduli space BPS soliton while approaching the impurity changes its spectral structure clear signature of the role of the modes

excited BPS \bar{K} colliding on the impurity $\phi = \phi_{BPS}(x,t;x_0) + \eta(x,t;x_0)$

spectral wall

a well defined region in space at which

soliton nontrivially interacts

due to the mode transition to the continuous spectrum

the effect first discovered for the BPS-impurity models but...

- → should be present in a beyond geodesic-approx. dynamics of any BPS model whenever a mode enters the continuous spectrum Abelian Higgs vortices at critical coupling
- ightarrow role in kink dynamics in non-BPS processes? whenever a mode enters the continuous spectrum ϕ^4 , ϕ^6 ...

solvable self-dual impurity

solvable self-dual impurity models

Adam, Oles, Queiruga Romanczukiewicz, Wereszczynski, JHEP (19) [1905.06080]

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \phi_x^2 + W^2 + W^2 \sigma^2 + 2W \sigma^2 + \sqrt{2} \sigma W \phi_x \right]$$
obtained by $\sigma \to W \sigma$

topological bound

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \left(\phi_{x} + \sqrt{2}W + \sqrt{2}\sigma W \right)^{2} - \sqrt{2}W\phi_{x} \right]$$

$$\geq -\sqrt{2} \int_{-\infty}^{\infty} dx W\phi_{x} = \sqrt{2}Q \int_{\phi_{-}}^{\phi_{+}} Wd\phi$$

- Bogomolny eq.

$$\frac{1}{\sqrt{2}}\phi_X + W(1+\sigma) = 0 \quad \Rightarrow \quad \frac{1}{\sqrt{2}}\phi_Y + W = 0$$

solvable
$$\frac{dy}{dx} = 1 + \sigma(x) \implies y(x) = x + \int_{-\infty}^{x} \sigma(x') dx' \equiv x + \Delta_{\sigma}(x)$$

- **generalized translation** pure coordinate transformation trivial translation in $y \to \text{moduli space coordinate}$

analytically known

$$ightarrow$$
 BPS solutions $\phi_{BPS}(x) = -\tanh(x + \Delta_{\alpha}(x) + x_0), \quad \Delta_{\alpha}(x) = \alpha \ (\tanh x + 1)$ lumps = vacua of no-impurity model: $\phi = \pm 1$

 \rightarrow moduli space coordinate x_0

$$\rightarrow$$
 moduli space metric $\phi(x, t) = \phi_{BPS}(x, x_0(t))$

$$L_{eff} = \frac{1}{2} M(x_0) \dot{x}_0^2, \quad M = \int_{-\infty}^{\infty} dx \left(\frac{d}{dx_0} \phi_{BPS}(x + \Delta_{\alpha}(x) + x_0(t)) \right)^2$$

$$ightarrow$$
 spectral potential $V(x)=2(1+\sigma)^2\partial_\phi(WW_\phi)-\sqrt{2}\sigma_XW_\phi$

but much more... non-localized impurities

kink-antikink annihilation - zero static force limit

non-localized impurities

$$\sigma_j = \frac{j}{2} \tanh x - 1$$

BPS solutions

$$\phi(x; a) = -\frac{\cosh^j x - a}{\cosh^j x + a}, \quad a = -1 + e^{jX}$$

- ightarrow top. trivial sector
- \rightarrow a or X moduli coordinate
- $ightarrow \phi = -1$ lump is a member of the moduli space (has a zero mode)
- $ightarrow \phi =$ 1 lump is not a member of the moduli space (no a zero mode)
- $\rightarrow {\color{red}\mathsf{moduli}}\ {\color{red}\mathsf{space}}\ {\color{red}\mathsf{kink-antkink}}\ {\color{red}\mathsf{annihilation}}$

lowest order dynamics geodesic flow

beyond geodesic annihilation: spectral walls

Adam, Oles, Romanczukiewicz, Wereszczynski, 1907.xxxxx

excite a bound mode
$$j = 1$$
 and $j = 0.7$

- → zero mode: symmetric change of the position of the solitons
- ightarrow deep bound mode: asymmetric change of the position of the solitons
- \rightarrow two shape modes of asymptotic K, K^*

beyond geodesic annihilation: spectral walls

asymmetric superposition of the shape modes

- ightarrow the spectral wall at $\phi_0=0.36$
- \rightarrow the vacuum wall at $\phi_0 = -1$
- → bouncing structure possible

beyond geodesic annihilation: spectral walls

symmetric superposition of the shape modes

- ightarrow the spectral wall at $\phi_0 = -0.34$ not too well visible
- \rightarrow shadow of the vacuum wall

higher spectral walls and radiation bursts

deepest mode: asymmetric superposition of the translation modes

 $higher\ spectral\ walls\ o\ when\ higher\ harmonics\ hit\ the\ mass\ threshold$

$$n\omega_n = E_{continuum} \Rightarrow \omega_n = \frac{j^2}{r_n}$$

ightarrow higher spectral walls ightarrow v. sensitive, before the wall is hit

 \rightarrow radiation bursts

higher spectral walls and radiation bursts

-> radiation bursts eight orders of magnitude

summary

 $\label{eq:self-dual BPS impurity models} \textbf{ a new, previously unknown class of models}$ no restriction on the spatial form of the impurity can be added for any BPS model

(1+1) dimensions

half of BPS solitons of the original theory preserve the BPS property no static force between BPS solitons and impurity

spectral structure depends on a position on the moduli space

as in higher dim BPS models - AH vortices
a proper toy-model to study higher dim solitons
suitable for study of the soliton-mode interactions
the spectral wall phenomenon

kinks annihilation (scattering) only via modes and radiation a new tool for switching off the static force

make the SD impurity dynamical Manton, Oles, Wereszczynski, in progress

- applications: condense matter
- (d+1) dimensions
 known, lots of structures....

