
Skyrmions coupled to omega mesons

Martin Speight (Leeds)
Bjarke Gudnason (Keio, Tokyo)

Topological Solitons, Nonperturbative Gauge Dynamics and
Confinement 2
Pisa, July 2019



The Skyrme–ω model

Skyrme field ϕ : M → S3 ⊂ R4

ϕ = (ϕ0,ϕ1,ϕ2,ϕ3) = (σ,π1,π2,π3)

Baryon current Bµ = 1
12π2 εµνρσεabcd ϕa∂νϕb∂ρϕc∂σϕd

Omega meson ω = ωµdxµ

L =
1
8

∂µϕ ·∂µ
ϕ−V (ϕ)− 1

4
ωµνω

µν +
1
2

ωµω
µ + gωµBµ

V (ϕ) = M2

4 (1−ϕ0), ωµν = dω(∂µ,∂ν)

Coupling constant g > 0. Upper bound from ω→ πππ process
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Previous work

1984, Adkins-Nappi: B = 1 hedgehog, rigid body quantization, fit
to N, ∆ masses. g = 96.7

2003, Park-Rho-Vento: included ρ, computed skyrme crystal
using truncated Fourier series

2009, Sutcliffe: B = 1,2,3,4 imposing rational map “ansatz” for ϕ

and truncated expansion in spherical harmonics for ω. Set energy
scale by putting Fπ = F exp

π . Chose g so that m4 = mexp
α . g = 34.7

[2009, Foster-Sutcliffe: (2 + 1)-dimensional version B = 1,2,3,4
full numerics using “a heat flow method”]

Why is this a hard problem?



Some notation

M 1,3 spacetime
Hodge isomorphism ?
Wave operator � = ∂µ∂µ

M3 space
Hodge isomorphism ∗
Laplacian ∆ =−∂i∂i

Ω = volume form on S3, normalized s.t.
∫

S3 Ω = 1



The field equations

1
4

P�ϕ + (gradV )◦ϕ + g ? (dω∧Ξϕ) = 0

−?d?dω + ω + gB = 0

P : u 7→ u− (ϕ ·u)ϕ

B = Bµdxµ = ?ϕ∗Ω

Ξϕ is a two-form on M valued in ϕ−1TS3

h(Z ,Ξϕ(X ,Y )) = Ω(Z ,dϕ(X),dϕ(Y ))

(Ξϕ)b
µν = 1

12π2 εµνρσεabcd ϕa∂ρϕc∂σϕd
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The static field equations

1
4

P∆ϕ + (gradV )◦ϕ + g ∗ (df ∧Ξϕ) = 0

(∆ + 1)f = −g ∗ϕ
∗Ω

∂tϕ = 0⇒ B = B0dt ⇒ ω = fdt

Coincides with Euler-Lagrange equation for the constrained
variational problem

E(ϕ, f ) =
∫

M

(
1
8
|dϕ|2 + V (ϕ) +

1
2
|df |2 +

1
2

f 2
)

(∆ + 1)f = −g ∗ϕ
∗Ω (∗)

Want to minimize E(ϕ, f ) subject to the constraint (*).



Numerical method: arrested Newton flow

Configuration space C : submanifold of C∞
B (M,S3)×C∞(M) on

which (*) holds

(∆+1)  f =− gB
0

ϕ

f

Want to minimize E : C → R
Start at some X(0) ∈ C with Ẋ(0) = 0, solve Newton’s equation
for motion in potential E

Ẍ =−gradE

If E(t) > E(t−δt) set Ẋ(t) = 0 and restart the flow.

Much faster than gradient flow.
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Numerical method: arrested Newton flow

C is a graph over C∞
B (M,S3)

Pϕtt =−1
4

P∆ϕ− (gradV )◦ϕ−g ∗ (df ∧Ξϕ)

Discretize space, 4th order Runge-Kutta for time stepping

After each time step must solve (∆ + 1)f =−gB0f

EL equation for

Q(f ) =
∫

M
(
1
2
|df |2 +

1
2

f 2 + gB0f )

Minimize Q(f ) via conjugate gradient method

Iterative: start with good f , typically converges in 0–3 cycles
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Possibility of low binding energies

p

p

p
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q qp
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p
3

Llinearized =
1
8

∂µπ ·∂µ
π− M2

8
− 1

2
∂µf∂µf +

1
2

f 2 + ρ ·π−ρ0f

M < 1 scalar dipole interaction dominates at long range

Scalar monopole interaction is repulsive

Expect BE to vanish as M→ 1 (skyrmions unbound for M > 1)
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m1/m4 = 0.2517, M = 0.176⇒ g = 14.34



B = 1 skyrmion

Length unit: ~c/mω



Calibration: g = 14.34

Charge radius of proton

rE =

(∫
R3

r2{Inormalized
3 +

1
2

B0}
)1/2

≡ 0.875fm

sets mω = 461.4MeV (mexp
ω = 782.7MeV )

Energy unit F 2
π/mω

Choose Fπ such that m1 = mexp
N = 938.0MeV . Then m4 ≡mexp

α .

Fπ = 144.1MeV (F exp
π = 130MeV )

ω→ πππ bound: Fπg/mω < 23.9. We have Fπg/mω = 10.8



Calibration: g = 14.34

Charge radius of proton

rE =

(∫
R3

r2{Inormalized
3 +

1
2

B0}
)1/2

≡ 0.875fm

sets mω = 461.4MeV (mexp
ω = 782.7MeV )

Energy unit F 2
π/mω

Choose Fπ such that m1 = mexp
N = 938.0MeV . Then m4 ≡mexp

α .

Fπ = 144.1MeV (F exp
π = 130MeV )

ω→ πππ bound: Fπg/mω < 23.9. We have Fπg/mω = 10.8



Skyrmions g = 14.34



Classical binding energies g = 14.34
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Skyrmions g = 34.7



Concluding remarks

Unlike conventional Skyrme model, have a genuine coupling
constant: changing it really affects the skyrmions

Small g regime may be interesting: low binding energies

Numerical problem is tractable using arrested Newton
flow/conjugate gradient scheme
Open problems:

Quantization (of course).
Topological energy bound? E(ϕ)≥ const×B?
Existence of energy minimizers (even on compact M)? Much
harder than E2 + E0 + E6 model
Isospin symmetry breaking term

L ′ = ?dω∧dπ1∧dπ2

can reproduce mn–mp mass difference. What does it do to B ≥ 2
skyrmions?


