Skyrmions coupled to omega mesons

Martin Speight (Leeds)
Bjarke Gudnason (Keio, Tokyo)

Topological Solitons, Nonperturbative Gauge Dynamics and
Confinement 2
Pisa, July 2019

- Skyrme field $\varphi: \mathcal{M} \rightarrow S^{3} \subset \mathbb{R}^{4}$

$$
\varphi=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\sigma, \pi_{1}, \pi_{2}, \pi_{3}\right)
$$

Baryon current $B^{\mu}=\frac{1}{12 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \varepsilon_{a b c d} \varphi_{a} \partial_{\nu} \varphi_{b} \partial_{\rho} \varphi_{c} \partial_{\sigma} \varphi_{d}$

- Skyrme field $\varphi: \mathcal{M} \rightarrow S^{3} \subset \mathbb{R}^{4}$

$$
\varphi=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\sigma, \pi_{1}, \pi_{2}, \pi_{3}\right)
$$

Baryon current $B^{\mu}=\frac{1}{12 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \varepsilon_{a b c d} \varphi_{a} \partial_{\nu} \varphi_{b} \partial_{\rho} \varphi_{c} \partial_{\sigma} \varphi_{d}$

- Omega meson $\omega=\omega_{\mu} d x^{\mu}$
- Skyrme field $\varphi: \mathcal{M} \rightarrow S^{3} \subset \mathbb{R}^{4}$

$$
\varphi=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\sigma, \pi_{1}, \pi_{2}, \pi_{3}\right)
$$

Baryon current $B^{\mu}=\frac{1}{12 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \varepsilon_{a b c d} \varphi_{a} \partial_{\nu} \varphi_{b} \partial_{\rho} \varphi_{c} \partial_{\sigma} \varphi_{d}$

- Omega meson $\omega=\omega_{\mu} d x^{\mu}$

$$
\mathcal{L}=\frac{1}{8} \partial_{\mu} \varphi \cdot \partial^{\mu} \varphi-V(\varphi)-\frac{1}{4} \omega_{\mu \nu} \omega^{\mu \nu}+\frac{1}{2} \omega_{\mu} \omega^{\mu}+g \omega_{\mu} B^{\mu}
$$

- $V(\varphi)=\frac{M^{2}}{4}\left(1-\varphi_{0}\right), \quad \omega_{\mu \nu}=\mathrm{d} \omega\left(\partial_{\mu}, \partial_{\nu}\right)$
- Coupling constant $g>0$. Upper bound from $\omega \rightarrow \pi \pi \pi$ process
- 1984, Adkins-Nappi: $B=1$ hedgehog, rigid body quantization, fit to N, Δ masses. $g=96.7$
- 2003, Park-Rho-Vento: included ρ, computed skyrme crystal using truncated Fourier series
- 2009, Sutcliffe: $B=1,2,3,4$ imposing rational map "ansatz" for φ and truncated expansion in spherical harmonics for ω. Set energy scale by putting $F_{\pi}=F_{\pi}^{\text {exp }}$. Chose g so that $m_{4}=m_{\alpha}^{\text {exp }} \cdot g=34.7$
- [2009, Foster-Sutcliffe: $(2+1)$-dimensional version $B=1,2,3,4$ full numerics using "a heat flow method"]
- Why is this a hard problem?

Some notation

- $\mathcal{M}^{1,3}$ spacetime
- Hodge isomorphism 夫
- Wave operator $\square=\partial_{\mu} \partial^{\mu}$
- M^{3} space
- Hodge isomorphism *
- Laplacian $\Delta=-\partial_{i} \partial_{i}$
- $\Omega=$ volume form on S^{3}, normalized s.t. $\int_{S^{3}} \Omega=1$

$$
\begin{aligned}
\frac{1}{4} P \square \varphi+(\operatorname{grad} V) \circ \varphi+g \star\left(\mathrm{~d} \omega \wedge \bar{\Xi}_{\varphi}\right) & =0 \\
-\star \mathrm{d} \star \mathrm{~d} \omega+\omega+g B & =0
\end{aligned}
$$

- $P: u \mapsto u-(\varphi \cdot u) \varphi$
- $B=B_{\mu} d x^{\mu}=\star \varphi^{*} \Omega$
- $\bar{\Xi}_{\varphi}$ is a two-form on \mathscr{M} valued in $\varphi^{-1} T S^{3}$

$$
h\left(Z, \Xi_{\varphi}(X, Y)\right)=\Omega(Z, \mathrm{~d} \varphi(X), \mathrm{d} \varphi(Y))
$$

$$
\left(\bar{\Xi}_{\varphi}\right)_{\mu \nu}^{b}=\frac{1}{12 \pi^{2}} \varepsilon_{\mu v \rho \sigma} \varepsilon_{a b c d} \varphi_{a} \partial^{\rho} \varphi_{c} \partial^{\sigma} \varphi_{d}
$$

The static field equations

$$
\begin{aligned}
\frac{1}{4} P \square \varphi+(\operatorname{grad} V) \circ \varphi+g \star\left(\mathrm{~d} \omega \wedge \Xi_{\varphi}\right) & =0 \\
-\star \mathrm{d} \star \mathrm{~d} \omega+\omega+g B & =0
\end{aligned}
$$

The static field equations

$$
\begin{aligned}
\frac{1}{4} P \square \varphi+(\operatorname{grad} V) \circ \varphi+g \star\left(\mathrm{~d} \omega \wedge \equiv_{\varphi}\right) & =0 \\
-\star \mathrm{d} \star \mathrm{~d} \omega+\omega+g B & =0
\end{aligned}
$$

- $\partial_{t} \varphi=0 \Rightarrow B=B_{0} d t \Rightarrow \omega=f d t$

The static field equations

$$
\begin{aligned}
\frac{1}{4} P \Delta \varphi+(\operatorname{grad} V) \circ \varphi+g *\left(\mathrm{~d} f \wedge \equiv_{\varphi}\right) & =0 \\
(\Delta+1) f & =-g * \varphi^{*} \Omega
\end{aligned}
$$

- $\partial_{t} \varphi=0 \Rightarrow B=B_{0} d t \Rightarrow \omega=f d t$

The static field equations

$$
\begin{aligned}
\frac{1}{4} P \Delta \varphi+(\operatorname{grad} V) \circ \varphi+g *\left(\mathrm{~d} f \wedge \equiv_{\varphi}\right) & =0 \\
(\Delta+1) f & =-g * \varphi^{*} \Omega
\end{aligned}
$$

- $\partial_{t} \varphi=0 \Rightarrow B=B_{0} d t \Rightarrow \omega=f d t$
- This is not the condition for minimizing static energy:

$$
E(\varphi, f)=\int_{M}\left(\frac{1}{8}|\mathrm{~d} \varphi|^{2}+V(\varphi)+\frac{1}{2}|\mathrm{~d} f|^{2}+\frac{1}{2} f^{2}\right)
$$

$$
\begin{aligned}
\frac{1}{4} P \Delta \varphi+(\operatorname{grad} V) \circ \varphi+g *\left(\mathrm{~d} f \wedge \equiv_{\varphi}\right) & =0 \\
(\Delta+1) f & =-g * \varphi^{*} \Omega
\end{aligned}
$$

- $\partial_{t} \varphi=0 \Rightarrow B=B_{0} d t \Rightarrow \omega=f d t$
- Coincides with Euler-Lagrange equation for the constrained variational problem

$$
\begin{aligned}
E(\varphi, f) & =\int_{M}\left(\frac{1}{8}|\mathrm{~d} \varphi|^{2}+V(\varphi)+\frac{1}{2}|\mathrm{~d} f|^{2}+\frac{1}{2} f^{2}\right) \\
(\Delta+1) f & =-g * \varphi^{*} \Omega
\end{aligned}
$$

- Want to minimize $E(\varphi, f)$ subject to the constraint (*).
- Configuration space \mathscr{C} : submanifold of $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right) \times C^{\infty}(\mathrm{M})$ on which (*) holds

- Configuration space \mathscr{C} : submanifold of $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right) \times C^{\infty}(\mathrm{M})$ on which (*) holds

- Want to minimize $E: \mathscr{C} \rightarrow \mathbb{R}$
- Configuration space \mathscr{C} : submanifold of $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right) \times C^{\infty}(\mathrm{M})$ on which (*) holds

- Want to minimize $E: \mathscr{C} \rightarrow \mathbb{R}$
- Start at some $X(0) \in \mathscr{C}$ with $\dot{X}(0)=0$, solve Newton's equation for motion in potential E

$$
\ddot{X}=-\operatorname{grad} E
$$

If $E(t)>E(t-\delta t)$ set $\dot{X}(t)=0$ and restart the flow.

- Much faster than gradient flow.

Numerical method: arrested Newton flow

- \mathscr{C} is a graph over $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right)$

$$
P \varphi_{t t}=-\frac{1}{4} P \Delta \varphi-(\operatorname{grad} V) \circ \varphi-g *\left(\mathrm{~d} f \wedge \Xi_{\varphi}\right)
$$

- \mathscr{C} is a graph over $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right)$

$$
P \varphi_{t t}=-\frac{1}{4} P \Delta \varphi-(\operatorname{grad} V) \circ \varphi-g *\left(\mathrm{~d} f \wedge \Xi_{\varphi}\right)
$$

- Discretize space, 4th order Runge-Kutta for time stepping
- After each time step must solve $(\Delta+1) f=-g B_{0} f$
- \mathscr{C} is a graph over $C_{B}^{\infty}\left(\mathrm{M}, S^{3}\right)$

$$
P \varphi_{t t}=-\frac{1}{4} P \Delta \varphi-(\operatorname{grad} V) \circ \varphi-g *\left(\mathrm{~d} f \wedge \Xi_{\varphi}\right)
$$

- Discretize space, 4th order Runge-Kutta for time stepping
- After each time step must solve $(\Delta+1) f=-g B_{0} f$
- EL equation for

$$
Q(f)=\int_{M}\left(\frac{1}{2}|\mathrm{~d} f|^{2}+\frac{1}{2} f^{2}+g B_{0} f\right)
$$

Minimize $Q(f)$ via conjugate gradient method

- Iterative: start with good f, typically converges in $0-3$ cycles

$$
\mathcal{L}_{\text {linearized }}=\frac{1}{8} \partial_{\mu} \pi \cdot \partial^{\mu} \pi-\frac{M^{2}}{8}-\frac{1}{2} \partial_{\mu} f \partial^{\mu} f+\frac{1}{2} f^{2}+\rho \cdot \pi-\rho_{0} f
$$

- $M<1$ scalar dipole interaction dominates at long range
- Scalar monopole interaction is repulsive
- Expect BE to vanish as $M \rightarrow 1$ (skyrmions unbound for $M>1$)

m_{1} / m_{4} (classical)

- $m_{1} / m_{4}=0.2517, M=0.176 \Rightarrow g=14.34$

$B=1$ skyrmion

- Length unit: $\hbar c / m_{\omega}$

Calibration: $g=14.34$

- Charge radius of proton

$$
r_{E}=\left(\int_{\mathbb{R}^{3}} r^{2}\left\{I_{3}^{\text {normalized }}+\frac{1}{2} B_{0}\right\}\right)^{1 / 2} \equiv 0.875 f m
$$

sets $m_{\omega}=461.4 \mathrm{MeV}\left(m_{\omega}^{\text {exp }}=782.7 \mathrm{MeV}\right)$

Calibration: $g=14.34$

- Charge radius of proton

$$
r_{E}=\left(\int_{\mathbb{R}^{3}} r^{2}\left\{l_{3}^{\text {normaized }}+\frac{1}{2} B_{0}\right\}\right)^{1 / 2} \equiv 0.875 f m
$$

sets $m_{\omega}=461.4 \mathrm{MeV}\left(m_{\omega}^{\text {exp }}=782.7 \mathrm{MeV}\right)$

- Energy unit F_{π}^{2} / m_{ω}
- Choose F_{π} such that $m_{1}=m_{N}^{e x p}=938.0 \mathrm{MeV}$. Then $m_{4} \equiv m_{\alpha}^{\text {exp }}$.

$$
F_{\pi}=144.1 \mathrm{MeV} \quad\left(F_{\pi}^{e x p}=130 \mathrm{MeV}\right)
$$

- $\omega \rightarrow \pi \pi \pi$ bound: $F_{\pi} g / m_{\omega}<23.9$. We have $F_{\pi} g / m_{\omega}=10.8$

Classical binding energies $g=14.34$

Skyrmions $g=34.7$

- Unlike conventional Skyrme model, have a genuine coupling constant: changing it really affects the skyrmions
- Small g regime may be interesting: low binding energies
- Numerical problem is tractable using arrested Newton flow/conjugate gradient scheme
- Open problems:
- Quantization (of course).
- Topological energy bound? $E(\varphi) \geq$ const $\times B$?
- Existence of energy minimizers (even on compact M)? Much harder than $E_{2}+E_{0}+E_{6}$ model
- Isospin symmetry breaking term

$$
\mathcal{L}^{\prime}=\star \mathrm{d} \omega \wedge \mathrm{~d} \pi_{1} \wedge \mathrm{~d} \pi_{2}
$$

can reproduce $m_{n}-m_{p}$ mass difference. What does it do to $B \geq 2$ skyrmions?

