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The Skyrme—w model

@ Skyrme field ¢ : M — S° C R*

0 = (9o, 91,02, ¢03) = (0,71, T2, T3)

Baryon current B* = —; &P 204020y Qp0p P05 Py
@ Omega meson ® = w,dx"

1 1 1
L= ga,,q) "o — V(o) — Zcoyvm‘“’ + 50)#0)“ + g, B"

o V() =M(1-¢p), @ =do(d,,d)
@ Coupling constant g > 0. Upper bound from ® — Tttt process



Previous work

@ 1984, Adkins-Nappi: B = 1 hedgehog, rigid body quantization, fit
to N, A masses. g =96.7

@ 2003, Park-Rho-Vento: included p, computed skyrme crystal
using truncated Fourier series

@ 2009, Sutcliffe: B=1,2,3,4 imposing rational map “ansatz” for ¢
and truncated expansion in spherical harmonics for ®. Set energy
scale by putting F = F;”. Chose g so that my = m§®. g = 34.7

@ [2009, Foster-Sutcliffe: (2 4 1)-dimensional version B=1,2,3,4
full numerics using “a heat flow method”]

@ Why is this a hard problem?



o M3 spacetime

e Hodge isomorphism %

e Wave operator [] = d,0"
e M° space

e Hodge isomorphism

e Laplacian A = —d;0;

@ Q = volume form on S%, normalized s.t. [4 Q =1



The field equations

1 —
ZPD(p—F (grad V)o@ +g*(doA=,) = 0
—*xdxdo+w+gB = 0

@ Piu—u—(9-u)o
@ B= B,dx" =*@*Q2
@ =, is a two-form on M valued in ¢ ' TS®

h(Z,Z¢(X, Y)) = Q(Z,de(X),do(Y))
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The static field equations

1
ZPA(er(grad V)op+gx(dfA=y) = 0
(A+1)f = —gx0'Q

@ 0,0 =0= B= Bydt = o= fat
@ This is not the condition for minimizing static energy:

1 1 1
E(0.1) = [ (5la0k+ vio)+ ylar®+ 1)



The static field equations

1
ZPA(er(grad V)op+gx(dfA=y) = O
(A4+1)f = —g*x0'Q

@ 0,0 =0= B= Bydt = o= fat

@ Coincides with Euler-Lagrange equation for the constrained
variational problem

(e Ve tp
E0f) = [ (Glae vio) + Jlark+ 1)
(A4+1)f = —g*x0*Q (%)

@ Want to minimize E(@, ) subject to the constraint (*).
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Numerical method: arrested Newton flow

@ Configuration space ¢’: submanifold of Cg; (M, S®) x C*(M) on
which (*) holds
;

(A+]) f=—gB,

@ Want to minimize E: 4 — R

@ Start at some X(0) € ¢ with X(0) = 0, solve Newton’s equation
for motion in potential E

X = —gradE

If E(t) > E(t— 3t) set X(t) = 0 and restart the flow.
@ Much faster than gradient flow.



Numerical method: arrested Newton flow

e ¢ is a graph over C;(M, S®)

1
Poy = —ZPA(p—(grad V)op—gx(df A=)



Numerical method: arrested Newton flow

e ¢ is a graph over C;(M, S®)

Py = —%PA(p—(grad V)o(p—g*(df/\zq))

@ Discretize space, 4th order Runge-Kutta for time stepping
@ After each time step must solve (A +1)f = —gBof



Numerical method: arrested Newton flow

e ¢ is a graph over C;(M, S®)
1 _
Py = —ZPA(p— (grad V)o@ —gx(df A=)
@ Discretize space, 4th order Runge-Kutta for time stepping

@ After each time step must solve (A +1)f = —gBof
@ EL equation for

1 1
Q(f):/(f|df\2+ff2—|—gBof)
M 2 2

Minimize Q(f) via conjugate gradient method
@ lterative: start with good f, typically converges in 0—3 cycles



Possibility of low binding energies

P P

p,

1 M2 4 1,
Llinearized - ga/.ln'ayn_ ? - anfayf‘i_ Ef +p ‘T — pof

@ M < 1 scalar dipole interaction dominates at long range
@ Scalar monopole interaction is repulsive

@ Expect BE to vanish as M — 1 (skyrmions unbound for M > 1)
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@ my/my=0.2517, M=0.176 = g = 14.34



B =1 skyrmion

blue: g=96.7
red: g=34.7

green: g=14.34

@ Length unit: ic/m,

blue: g=96.7

red: g=347

green: g=14.34




Calibration: g = 14.34

@ Charge radius of proton

1 1/2
re = </ r2{/§ormalized + BO}) = 0.875fm
IR3 2

sets my, = 461.4MeV (mg” = 782.7MeV)



Calibration: g = 14.34

@ Charge radius of proton

1 1/2
re = </ r?{ lgermelzed 4 Bo}) = 0.875fm
R 2

sets my, = 461.4MeV (mg” = 782.7MeV)

@ Energy unit F2/myg,
@ Choose Fy such that my = my” = 938.0MeV. Then ms = mg”.

Fr=1441MeV (FZ* =130MeV)

@ o — mnw bound: Frg/mg, < 23.9. We have Frg/mg, = 10.8



Skyrmions g = 14.34
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Concluding remarks

@ Unlike conventional Skyrme model, have a genuine coupling
constant: changing it really affects the skyrmions

@ Small g regime may be interesting: low binding energies

@ Numerical problem is tractable using arrested Newton
flow/conjugate gradient scheme

@ Open problems:

e Quantization (of course).

e Topological energy bound? E(¢) > const x B?

e Existence of energy minimizers (even on compact M)? Much
harder than E, + Eg + Eg model

o Isospin symmetry breaking term

L =xdoA dmy Admo

can reproduce mp—m, mass difference. What does it do to B > 2
skyrmions?



