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Motivations

We have studied at quantum level a non-relativistic version of the
Wess-Zumino model in (2+1)D with /' = 2 SUSY

@ In models describing CM systems SUSY has been observed to be an
emergent symmetry, that is it appears in the effective theory
describing the low-energy modes. On the other hand, in this regime
the effective theory may be in a non-relativistic setting.

Therefore, it is physically relevant to construct NR SUSY models

@ Non-relativistic holography: Non-relativistic generalisation of the
AdS/CFT is of interest for the holographic description of CM systems.
Which is the role of supersymmetry in NR gauge/gravity
correspondence? D. Son, PRD78 (2008) 046003;

K. Balasubramanian, J. McGreevy, PRL101 (2008) 061601



State of the art
NR models with NO SUSY have been extensively studied, which have

—

o Galilean symmetry (H, P, .J,G) or Bargmann symmetry (U (1) central
extension) in (3+1)D J-M. Lévy-Leblond, CMP6 286 (1967)

@ Schroedinger symmetry = NR version of conformal symmetry
C. R. Hagen, PRD5 (1972) 377

- -

o Lifshitz symmetry (H, P, J, D) E. Lifshitz, ZETF11 (1941) 255, 269

NR SUSY models have been extensively studied, in

@ (3+1)D = WZ model, QED, Lifshitz models
R. Puzalowski, Acta Phys. Austriaca 50 (1978) 45; T. E. Clark and S. T. Love, NPB
231 (1984); J. A. de Azcarraga and D. Ginestar, JMP 32 (1991); R. Dijkgraaf, D.

Orlando, and S. Reffert, 0903.0732; ....

@ (24+1)D = N =2 Chern-Simons-matter theory (enhanced
Schroedinger symmetry)
M. Leblanc, G. Lozano, H. Min, AP 219 (1992) 328; O. Bergman, C. B. Thorn, PRD

52 (1995) 5997



From a theoretical point of view there are interesting questions:

@ Which are the renormalization properties of NR SUSY theories?

@ Does SUSY conspire with the NR space-time symmetry to mild UV
divergences?

@ Do non-renormalization theorems still work ?

We focus on (2+1)D field theories



Plan of the talk

1) Construction of the NR N = 2 supersymmetric Galilean algebra in
(24+1)D via DLCQ procedure

2) NR N = 2 Superspace

3) NR Wess-Zumino Model. Perturbative analysis, renormalization
properties, one-loop exactness

4) Conclusions and future directions



SUSY Extended Galilean algebra

There are different ways to obtain the extended Galilean algebra in (d+1)D

o Taking the Inonii-Wigner contraction of the (d+1)D Poincaré ® U(1)
algebra in the ¢ — oo limit

@ By dimensionally reducing a ((d+1)+1)D relativistic theory along a
null direction (DLCQ procedure)

Similarly, we can construct the Super-Galilean algebra in (d+1)D

@ Completing the Galilean algebra with a set of fermionic generators and
impose constraints on the algebra

o Taking the Indnii-Wigner contraction of the (d+1)D super-Poincaré
® U(1) algebra in the ¢ — oo limit

@ By dimensionally reducing a ((d+1)+1)D relativistic SUSY theory
along a null direction (DLCQ procedure)

= To construct a NR Superspace the most convenient approach is DLCQ



N =2 SUSY Galilean algebra in (2+1)D

[Py, Gk] = i0;M ,  [H,G;] =1iP;,
[Pj, J} = —iEjkPk 5 [Gj, J] = —’i€jka 5 ]7k' = 172

@1, J]=%Q:, {Q..Q]}=Vv2M,
[Q2,J] = =3Q2, [Q2,G1 —iGs] = —iQ1, {Q2Ql}=V2H,
{Q,Q1} =—(P1—iPy), {Q2,Ql}=—(P1 +iP)

Null reduction: We start from the (3+1)D super-Poincaré algebra
realized on the spacetime
3 0
~ = + .
(¥, 27, 2="?) =2 =2 light — cone coords.

V2




% compactify =~ on a tiny circle of radius R and rescale 7 — z7 /R,
x~ — Rx™.

* Write the (3+1)D anticommutator {Qa, 93} = io! .0, in terms of the
light-cone coordinates

(V20 0 —id
{Q’Q}‘l<al+iaz —\/567)

* Reduce a generic field as
O(z") =" D(zT =t,2") m — M — eigenvalue (adimensional)

* Identify 8, — 8;, d_ — im Qo = Qu, Qs — QL



NR Superspace

Since the null reduction does not affect the fermionic coordinates
(34 1) N =1 relativistic superspace = (2 + 1) A/ = 2 NR superspace
(@t a”, 2", 0% 0% — («*,2',6%,6%, (01", (6°)1)
Reduction of a generic superfield
(I)(ZCJ\/I,QO‘, éa) _ eimzi(i)(t7 ZEi7 017 62, (01)1‘7 (02)1‘)

* Covariant derivatives

D1 = gor — £0%(01 — i02) — 50" 0,
Do = 595 — 40°0, _ D1 = 55 — 56%(01 +1i0a) — 550" 0,
Do = 5% — £0°0p4 D; = 5oy — %el(al +id2) — 50°M
Dy = 355 — 501(01 —idh) — 50°M



* (Anti)chiral superfields D.% =0, DY =0

* Berezin integration

27 _
— /d3xd40<1> x Qi dz~ '™

™ Jo

/d4xd40¢> - /d%ﬁﬁ%‘
2]

=0=0

/d%d‘*eé = /d3xD2D2<i>‘9 U

=6=0

Non-vanishing result only if M(®) =0



Relativistic N =1 WZ model in (3+1)D

S:/d4xd4eiz+/d4xd29 (gz2+ %23) +he. =0

@ The WZ model is renormalizable

@ Renormalization in Superspace: UV divergent contributions only to
the Kéhler potential (no chiral divergent terms). Therefore,

L~ Lron = /d%Zg(iE)+/d29ZAZ§/2(%E3)

The absence of chiral divergences implies

ZZP =1 = 7z, =2z

@ Non-renormalization theorem
— Perturbative M.T. Grisaru, W. Siegel, M. Rocek, NPB 159 (1979) 429
— Non-perturbative N. Seiberg, PLB 318 (1993) 469

Holomorphicity, SUSY and R-symmetry



Non-relativistic Wess-Zumino model in (241)D

Particle number conservation requires at least two superfields
S = /d3xd40 (®101 + ©2®2) + g/d3xd20 705 + h.c.
M(®1) =m, M(P2) = —2m
Manifestly invariant under NR N = 2 SUSY
By =y + 0+ 0221 Vmx1 — %0‘*9@1
By = o+ 016 + 6% 25 v/2m o — %eaeaﬁ

(&1, F1) (&2, F») —  auxiliary (non-dynamical) fields



Technical subtely: M(p2) < 0, M(x2) <0

S = /dsx [2im¢18t@1 + (/318?@1 —4im<,528tg02 + (,5267;2(/)2 + ...
—————

Integrate by parts and exchange 2 <> @2 (the same for fermions)

S :/d?’x [@1 (2im8t + 812) ©1+ P2 (4im8t + 8,2) ©2

+ %1 (2imdh + 87) X1+ Xa (4imy + ) x2] + Sime

This action could have been obtained by null reduction of the action in
components for the relativistic (34+1)D WZ model



Renormalization in Superspace

@ Superfield propagators

S = - i
q)tl 7_:070 éa_ 7__'7079 = 5 . =5 .
(Pa(w, P, 01,01)Pa(—w, =P, 02, 02)) Smaw — P2+ ic

In configuration space

pae0) = [ Tode, 5(4>(0“92) i) __100) imes sy

(2m)3 Mmaw — P2+ ic int ©

@ Supervertices

Dy [
@y (2ig) @y (2ig*)

Dy [

Number of incoming arrows = Number of outgoing arrows

— 5N (0,-0,)  a=1,2

—62)



Selection rules

Loop diagrams are formally the same as in the relativistic 2-field WZ
model, but....

@ Selection rule 1 - Particle number conservation at each vertex

@ Selection rule 2 - Arrows inside a Feynman diagram cannot form a

closed loop. O. Bergman, PRD 46 (1992) 5474




* In momentum space

. = dw d*k 1
i @0, 80) - gl [ 5 - - =0
(2) [4mw — k2 + ia] [Zm(w -Q)—(k—p)2+ is}

* In configuration space it would be proportional to ©(¢t)©(—t) =0



Results
Self-energy corrections - The only non-vanishing diagram at one loop

- 2 -
o (@0,82) » 21 [aau@p0e@nn ",

Vertex corrections - No one-loop. At two loops

AUAA A

They vanish due to circulating loops.

No non-vanishing diagrams arise at higher loops = One-loop
exactness



* Non-relativistic non-renormalization theorem

We have proved the NR perturbative non-renormalization theorem (no
vertex corrections allowed)

Seiberg’s argument can be easily imported and a non-perturbative
non-renormalization theorem holds

* Exact beta-function

L= Lien = /d“a (Z121®1 + Z>D2D2) —|—g/d20 Z47173* 1 ®s + hic.

with Z1=1, Zy=1-1¢

There are no UV divergent vertex corrections. Therefore,

3

_ 21 g
2772 =1 — gz —z 2oy 9L _
ge1<2 9 2 +87rm5 Ba 4mm

The model is classically scale invariant, but scale invariance is lost due to
quantum corrections.



Conclusions

We have studied quantum properties of the simplest NR susy model
in (2+1)D, obtained as null reduction of N'=1 WZ model in (3+1)D.

@ The model is One-loop exact. Scale invariance is broken by one-loop
effects.

@ At quantum level the model cannot be obtained as the null reduction
of the quantum (3+1)D relativistic model. In particular, the (241)D
NR theory has much nicer properties compared to its (3+1) parent
theory.

Future directions
@ Coupling to gauge fields

@ Coupling to gravity. NR supergravity as null reduction of relativistic
supergravity? Connection with NR holography
@ Theories with more SUSY (ex: NR ABJM, v. Nakayama 0902.2267; K.-M.

Lee, S. Lee, S. Lee 0902.3857)

@ Opposite limit (¢ — 0). super-Carroll



