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The Skyrme Model

The standard Skyrme Model is Lagrangian is

L =

∫ (
−1

2
Tr(RµR

µ) +
1

16
Tr([Rµ,Rν ][Rµ,Rν ]) + m2Tr(U − I2)

)
d3x ,

where Rµ = (∂µU)U† and U ∈ SU(2) is the Skyrmion field. We also
include a pion mass term.

We can write U in terms of pion fields as U = σ + iπ · τ where π is a
triplet of pion fields, τ are the Pauli matrices and σ is an additional
scalar field.

Since U ∈ SU(2) the pion fields satisfy the constraint

σ2 + π · π = 1.
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The Skyrme Model

At spatial infinity we impose the boundary conditions that the fields
tend to the limits σ = 1 and πi = 0 for i = 1, 2, 3, equivalent to
imposing U → I2.

Hence we can do a one-point compactification and think of physical
space R3 ∪ {∞} as the 3-sphere S3.

Effectively, we have a map from physical space to target space
S3 → S3. It is known that such a map is indexed by an integer which
we shall call B, and which counts the number of Skyrmions.

The baryon number B can be calculated as an integral of the
topological density

B =

∫
Bd3x .
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Visualising Skyrmions

The topological density provides a good way of visualising Skyrmions,
by plotting level sets of B. Some examples are given below: from left
to right we have the minimal energy configurations for B = 1 to
B = 4: a sphere, a torus, a tetrahedron and a cube.

Note that B = 1 has spherical symmetry, B = 2 has toroidal
symmetry, B = 3 has tetrahedral symmetry and B = 4 has cubic
symmetry.
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Quantization

In quantum field theory, there are two types of particles: Bosons and
Fermions.

When a Boson wavefunction is rotated by 2π, it remains invariant.
However, if a Fermion wavefunction is rotated by 2π, then in
changes by a factor of (−1).

If two identical particles are exchanged then nothing happens to
Bosons, whereas the wavefunction of the Fermions changes by a
factor of (−1).

In quantum field theory, Bosons are usually described by scalar,
vector or tensor fields, whereas Fermions are represented by spinors.

Atomic nuclei are fermions, so we must build the fermionic constraint
into our quantisation scheme.
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Finkelstein-Rubinstein constraints

Key observation:

π1(QB) = Z2,

where QB is the space of
Skyrme configurations
with charge B.

Define wavefunctions ψ
on the covering space of
configuration space:

ψ : CQB → C.

Impose ψ(q̃1) = −ψ(q̃2).

Symmetries of Skyrmions
induce loops in
configuration space.
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Finkelstein-Rubinstein constraints

Induced action of SO(3)× SO(3) symmetries on ψ :

exp (−iα n · L) exp (−iβN ·K)ψ(q̃) = χFRψ(q̃),

where χFR =

{
1 if the induced loop is contractible,
−1 otherwise.

This is a rotation by α around axis n in space and a rotation by β
around axis N in target space (called an isorotation).

Here L and K are the body-fixed angular momentum operators in
space and target space, respectively.

Can we calculate the Finkelstein-Rubinstein constraint χFR ∈ π1(QB)?

Yes, there is a simple formula:

χFR = (−1)N where N =
B

2π
(Bα− β) .
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Rigid Body Quantization — Key idea

Calculate a minimal energy Skyrmion for a given charge B.

Derive its symmmetries.

Use Finkelstein-Rubinstein constraints to find allowed states with
given spin J and isospin I .

Compare these states |J〉|I 〉 with experiment
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Rigid Body Quantization - Results

B |J〉|I〉0 |J〉|I〉1 |J〉|I〉2 Experiment |J〉|I〉Exp. Match
1 | 12 〉|

1
2 〉 | 32 〉|

3
2 〉 | 52 〉|

5
2 〉

1
1H | 12 〉|

1
2 〉 X

2 |1〉|0〉 |3〉|0〉 |0〉|1〉 2
1H |1〉|0〉 X

3 | 12 〉|
1
2 〉 | 52 〉|

1
2 〉 | 32 〉|

3
2 〉

3
2He | 12 〉|

1
2 〉 X

4 |0〉|0〉 |4〉|0〉 |2〉|1〉 4
2He |0〉|0〉 X

5 | 12 〉|
1
2 〉 | 32 〉|

1
2 〉 | 12 〉|

3
2 〉

5
2He | 32 〉|

1
2 〉 7 5

2He∗

5∗ | 52 〉|
1
2 〉 | 72 〉|

1
2 〉 | 32 〉|

3
2 〉

5
2He | 32 〉|

1
2 〉 7 5

2He∗∗

6 |1〉|0〉 |3〉|0〉 |1〉|1〉 6
3Li |1〉|0〉 X

7 | 72 〉|
1
2 〉 | 13

2 〉|
1
2 〉 | 32 〉|

3
2 〉

7
3Li | 32 〉|

1
2 〉 7 7

3Li∗∗

8 |0〉|0〉 |2〉|0〉 |0〉|1〉 8
4Be |0〉|0〉 X

9 | 12 〉|
1
2 〉 | 32 〉|

1
2 〉 | 12 〉|

3
2 〉

9
4Be | 32 〉|

1
2 〉 7 9

4Be∗∗

9∗ | 12 〉|
1
2 〉 | 52 〉|

1
2 〉 | 32 〉|

3
2 〉

9
4Be | 32 〉|

1
2 〉 7 9

4Be∗∗

S. Krusch Homotopy of Rational Maps and the Quantization of Skyrmions , Ann. Phys., 394, (2003) 103

Steffen Krusch (Kent) Vibrational Quantisation Pisa 10 / 37



Predictions of the Skyrme model for B = 6

(a) Skyrme data (b) Experiment

Figure: Energy level diagram for nuclei with B = 6.
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Predictions of the Skyrme model for B = 6

(a) Skyrme data (b) B = 6 Skyrmion

Figure: Energy level diagram for nuclei with B = 6.
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Rigid Body Quantisation - Discussion

We see that the approach is successful for calculating the ground
states for small nuclei, in particular for B = 1 to B = 4 and also for
larger even nuclei.

It is also known that even excited spectra can be produced fairly well
for some nuclei such as Lithium-6 and other small even nuclei.

For Carbon-12 the ground state and first excited state (Hoyle state)
have both been calculated as compositions of B = 4 cubes, the
ground state as a triangular arrangement and the Hoyle state as a
chain.

For odd nuclei however, the method is largely unsuccessful.
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General Idea of Vibrational Quantization

Starting from our original Lagrangian, we can construct a reduced
Lagrangian by restricting the Skyrmion configuration to some finite
dimensional manifold.

For zero-mode quantisation we only allow rotations and isorotations
to change the kinetic energy and leave the static energy invariant.

Now we go one step further and introduce deformations that change
the static energy, which are parameterised by s.

The reduced Lagrangian becomes

L =
1

2
gij(s)ẏi ẏj − V (s),

where the ẏi are shorthand for the velocities of the deformations ṡ and
the angular velocities a and b, and gij is the metric on the manifold.
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Lithium-7

A 2015 paper by Chris Halcrow looks at quantising the Lithium-7
nucleus with the inclusion of a vibrational mode.

The results are very promising. Not only does the paper predict the
ground state to be a spin 3/2 state which is already an improvement
on the rigid body approach, but it also predicts a spectrum for
Lithium-7.

It predicts excited spin 1/2, 7/2 and 5/2 states which are
experimentally known to exist, and are correctly ordered although the
precise values of the energies are not perfect.
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Oxygen-16

A 2016 paper by Chris Halcrow, Chris King and Nick Manton looks at
quantising the Oxygen-16 nucleus, which they treat as being
composed of four B = 4 blocks and again a vibrational mode.

The restricted manifold is the 6-punctured sphere which we call M,
here the solid black line is the scattering mode shown. There are in
fact three copies of this mode corresponding to the three symmetry
axes of the tetrahedron.
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Properties of the 6-punctured Sphere

M has O/D2
∼= S3 symmetry.

We need only consider one quarter of the 6-punctured sphere which
we map onto a region of the complex upper half plane H, which we
call F . Note F = H/Γ(2), where Γ(2) is a modular subgroup whose
fundamental domain can be chosen to coincide with F .

We will define a complex coordinate ξ = η + iε on F .

The colouring is done such that tetrahedrons are at positions where 3
colours meet and squares are at positions where 4 colours meet.
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Properties of the 6-punctured Sphere

As an aside we can visualise the whole 6-punctured sphere. It is
related to the domain of the modular subgroup Γ(4).

We can identify the four quarters and six punctures quite easily.

Γ(4) is generated by the matrices A =

[
0 −1
1 0

]
and B =

[
1 1
0 1

]
, and

combinations of these matrices and their inverses allow us to map
between all of the coloured regions.

So, if we know the solution in one region, we can construct it in all of
the others.
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The Schrödinger Equation on F

The Schrödinger equation in general form is(
−~2

2
∆ + V

)
ψ = Eψ. (1)

where ξ = η + iε are coordinates of F ∈ H.
We split the operator ∆ into a rotational and a vibrational part as
∆ = ∆ξ +∇2 with ψ = φ|Θ〉 and ∇2|Θ〉 = EJ |Θ〉.

On F the vibrational part becomes ∆ξ = ε2

(
∂2

∂η2
+

∂2

∂ε2

)
, which is

invariant under all Möbius transformations.

Using the Möbius transformation ξ 7→ ξ − 1

ξ
and parity ξ 7→ −ξ̄, we

only need to solve (1) in the red region.
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The Schrödinger Equation on F

We can now separate out and solve the vibrational part of the
equation for the vibrational wavefunction φ(

−ε2

(
∂2

∂η2
+

∂2

∂ε2

)
+ V (η, ε)

)
φ = (E − EJ)φ

where a convenient choice of the potential is

V (η, ε) = ε2

(
ω2

(
η − 1

2

)2

+ µ2

)

which attains its global minimum at the tetrahedron
(η, ε) = (1/2,

√
3/2). The formula applies only in the red region.

The term EJ is related to the rotational energy (the ξ dependence of EJ

can be treated with perturbation theory.)
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The Different Representations of S3

The region F has S3 symmetry, and the group S3 has three irreducible
representations called the trivial, sign and standard representations.

In the trivial representation vibrational wavefunctions are invariant
under any element of S3, and in the sign representation they are
invariant under 3-cycles but change sign under transpositions.

The standard representation is two dimensional and more
complicated, and we will not discuss this here.

The potential is invariant under all elements of S3 so all vibrational
wavefunctions can be labelled completely by their representation and
parity.
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Constraints for the trivial and the sign representation

The transposition (1, 2) corresponds to a π/2 rotation around the
z-axis, so the wave function ψ = φ|Θ〉 is invariant provided that

(−1)sφ|Θ〉 = φ e
πi
2
L3 |Θ〉,

where s is 0 and 1 for the trivial and sign representations respectively.

Since φ is invariant under the 3-cycles (1, 2, 3) which corresponds to a
2π/3 rotation, we also have

φ|Θ〉 = φ e
2πi

3
1√
3

(L1+L2+L3)|Θ〉.

These are essentially Finkelstein-Rubinstein constraints as we have
met earlier. Allowed spin states for the trivial representation are
J = 0, 4, 6, . . . , and for the sign representation they are J = 3, 6, . . .

(The standard representation gives J = 2, 4, 5, 6, ....)
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Boundary conditions

We can deduce the boundary conditions
on the red region by looking at how
points on either side of boundary curves
are related by symmetry.

For the vertical lines, states with
positive parity require the derivative
normal to the boundary to be zero,
whereas negative parity requires the
function to be vanish on the boundary
(for both trivial and sign rep).

On the red curve, either the normal
derivative or the function has to vanish
(depending on parity and
representation).

Furthermore, the function vanishes at
infinity.
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The Ground State

The equation for φ now has to be
solved subject to suitable boundary
conditions on the red region. Then the
solution is mapped to the other regions

using parity and ξ 7→ ξ − 1

ξ
.

The ground state is a 0+ state with
∂⊥φ(ξ) = 0 on the boundary.

The wave function ψ has its maximum
at the tetrahedron and no nodal lines.

This state is consistent with the
zero-mode quantisation.
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Excited 0+ States

These states have the same boundary conditions, parity and spin as
the ground state but a higher energy.

Note that for the first excited state |ψ|2 has maxima at the
tetrahedrons and the squares which are minima and saddle points of
V , respectively.
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The first 0− State

This state has the opposite boundary
conditions due to having negative
parity, name φ = 0 on the boundary of
the red region.

This forces the maxima of |ψ|2 away
from tetrahedron and square. The
nodal lines are in fact the attractive
channel. Therefore, this state has much
higher energy.
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The Lowest State in the Sign Representation (3−)

In the sign representation with negative
parity, φ = 0 on the vertical lines η = 0
and η = ±1. On the curved boundary
we have ∂⊥φ(ξ) = 0.

The square of the wave function |ψ|2
has its maximum at the tetrahedrons
and nodal lines on the vertical lines.
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Excited 3− States and the first 3+ State

The 3− states have the same boundary
conditions, parity and spin as the
previous state but a higher energy.

The 3+ has the “opposite” boundary
conditions. It vanishes on the attractive
channel and in particular the square and
the tetrahedron. It therefore has much
higher energy.

Note that states with opposite parity
are not captured by a vibrational
quantisation that only takes the
attractive channel into account whereas
the remaining states can be calculated.
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The O-16 Spectrum

Halcrow, King and Manton produced the following spectrum

Solid shapes are predicted states and hollow shapes are experimental
states. Circles are states of positive parity and triangles are states
with negative parity.
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Comments

Note that the ground state, first excited 0+ state and first 4+ state
are fixed to experiment by the calibration.

The lowest lying J = 2 states have the correct order and
approximately the correct energy gaps.

The energy of the 0− state is much too high.
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The potential

In their original paper Halcrow, King and Manton make a simple
choice of potential that allowed them to solve the Schrödinger
equation using separation of variables and hence 1D numerics.

However in general the Schrödinger equation is not separable, and
requiring that it be so imposes severe restrictions on the potential
that we can choose, specifically it must be of the form

V (η, ε) = ε2(f1(ε) + f2(η)).

Observe that this potential is guaranteed to blow up at infinity due to
the ε2 factor, rather than tend to a constant.

It also turns out that this potential will be continuous but not smooth
across the boundaries when mapped into the other coloured regions.
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More general potentials

In order to avoid these restrictions on
the potential, we implemented a 2D
numerical scheme using a finite element
method in FreeFEM++.

As a proof of concept, we will first
apply the potential used by Halcrow,
King and Manton, specifically

V (η, ε) = ε2

(
ω2

(
η − 1

2

)2

+ µ2

)
.

This formula is only valid in the red region.

Note that this potential has a global
minimum at the tetrahedron. It also
has saddle points at the squares.
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Results (trivial rep)

Here we show the ground state, first excited trivial state, and the first
trivial state with negative parity (much higher energy), in agreement
with earlier calculations.
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Results

We also show the lowest energy sign state, the first excited sign state
and the first sign state with positive parity:
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A more general potential

We would like our potential to satisfy the following conditions:
Global minimum at the tetrahedron.
Other stationary points at the squares.
Smooth across the boundaries of the coloured regions.
Flattens off to a finite value at infinity.

These latter two conditions were previously impossible to satisfy, but
we now have the scope to do this.

The key idea is to solve the Schrödinger equation with zero potential,
and then find one state that is localised entirely around the
tetrahedron and one which is localised entirely around the squares.

We then construct a potential as a linear combination of these
wavefunctions and it will satisfy all of our requirements.

V = ω2 (Vtet + λVsq) + µ2

Then fit ω, λ and µ to obtain best fit with experimental spectrum.
Work in progress!
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Summary

We have reviewed the rigid body quantization of Skyrmions

We then introduced vibrational quantization and how it improves on
rigid body quantization

We have recapped the existing work on Oxygen-16

We reproduced the Oxygen-16 spectrum using a finite element
method

We are currently fitting parameters for a more general potential.
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Outlook

We discussed how the 6-punctured sphere can be used to
parametrises an important O-symmetric vibrational manifold and
quantize oxygen-16
The 3-punctured sphere is related to the shape space of triangles. We
are currently working on a vibrational quantization of carbon-12 on
this space
The figures show visualisations of the 3-punctured and 6-punctured
sphere using the Poincare disk model:
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