S-Fold SCFTs and Supersymmetry Enhancement

Ivan Garozzo

University of Milano Bicocca

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement 2, July 2019

This talk is based on:

- ► [1810.12323] with Gabriele Lo Monaco and Noppadol Mekareeya,
- ► [1901.10493] with Gabriele Lo Monaco and Noppadol Mekareeya,
- ► [1905.07183] with Gabriele Lo Monaco and Noppadol Mekareeya and Matteo Sacchi.

Plan of the talk

- 1. 3d $\mathcal{N}=4$ gauge theory and mirror symmetry
- 2. S-fold SCFTs
- 3. Supersymmetry enhancement

3d $\mathcal{N}=4$ gauge theory

▶ A large class of 3d $\mathcal{N}=4$ gauge theories can be engineered via brane systems involving D3, D5, NS5 [Hanany, Witten '96]

						5		7	8	9	
D3	Х	Х	Х				Х				
NS5	x	Х	Χ	Х	Х	Χ					
D3 NS5 D5	x	X	Х					х	Х	Х	

- ► The theories living on the worldvolume of D3 branes have R-symmetry $SU(2)_V \times SU(R)_H$.
- ▶ Two branches of the moduli space of vacua:
 - ▶ **Higgs Branch**: parametrized by gauge invariant operators built from scalars in the h-plet. It is classically exact.
 - Coulomb Branch: Parametrized by dressed monopole operators. It is not classically exact, receives quantum corrections.

Mirror Symmetry

- ▶ In [Intriligator, Seiberg '96] a duality has been discovered involving 3d $\mathcal{N}=4$ gauge theories. Such a duality acts in the following way:
 - ▶ Exchanges $SU(2)_V$ and $SU(2)_H$;
 - exchanges the Higgs and Coulomb branch;
 - exchanges mass terms and Fayet-Iliopulos terms.

Quantum effects (on the Coulomb branch) in one duality frame appears as **classical** effects on the other frame.

▶ In HW brane set-up mirror symmetry amounts to an SL(2, \mathbb{Z}) transformation supplemented by a rotation $x^j \to x^{j+4}$, $x^{j+4} \to -x^j$ for j = 3, 4, 5.

T[U(N)] theory

▶ The theory living on 1/2 BPS boundary conditions in $\mathcal{N}=4$ SYM is T[SU(N)] theory, whose quiver description is [Gaiotto, Witten '08]:

- Variant of this theory: $T[U(N)] = T[SU(N)] \times T[U(1)]$, where T[U(1)] is an almost empty theory, given by a $U(1) \times U(1)$ background v-plet plus an $\mathcal{N}=4$ background mixed CS term at level 1 between these two U(1)'s.
- ▶ T[U(N)] is a *self-mirror* theory whose Higgs and Coulomb branch are given by the nilpotent cone of SU(N):

$$\mathcal{N}_{SU(N)} = \{M_{N \times N} : M^N = 0\}, \qquad \dim_{\mathbb{H}} \mathcal{N}_{SU(N)} = \frac{1}{2}N(N-1)$$

A simple example

[IG, G. Lo Monaco, N. Mekareeya '18]

Let us consider **compact models**, namely we take the direction x^6 in the brane system to be compact. An example is the following

► The dimension of the Higgs branch is computed via the Higgs mechanism:

$$\dim_{\mathbb{H}} \mathcal{H} = 2N + 2\left[\frac{1}{2}(N-1)N\right] + N^2 - N^2 - N^2 = N$$

What about the Coulomb branch of this theory?

A simple example

► Let us consider the mirror theory (by definition the S-duality wall is invariant)

▶ The dimension of the Higgs branch is:

$$\dim_{\mathbb{H}} \mathcal{H} = N^2 + N^2 + N + 2 \left[\frac{1}{2} (N - 1) N \right] - 3N^2 = 0$$

A simple example

Using mirror symmetry we learn that:

- ▶ With respect to the case of the same theories with only usual hypermultiplets and no T[U(N)]-links we find that the Coulomb branch is much smaller (by 2N for both cases).
- ► Freezing rule: Nodes connected by T[U(N)]-links have "frozen" scalars in the corresponding vector multilplets. [IG, G. Lo Monaco, N. Mekareeya '18]
- ▶ Segments of D3 branes that are *cut* by an *S*-duality wall are "stuck" and do not posses Coulomb moduli.

The case of Chern-Simons

▶ Consider an Abelian theory in the presence of CS level k and a T[U(1)] link

▶ T[U(1)] contributes with a shift of -2 of the CS level; the superpotential and vacuum equations are

$$W = \tilde{Q}_i \varphi Q^i + \frac{1}{2}(k-2)\varphi^2, \quad i = 1, \dots, n$$

F-terms:
$$\tilde{Q}_i Q^i + (k-2)\varphi = 0$$
,

$$\tilde{Q}_i \varphi = \varphi Q^i = 0, \quad Q^i \sigma = \sigma \tilde{Q}_i = 0$$

D-terms:
$$(Q^{\dagger})_i Q^i - \tilde{Q}_i (\tilde{Q}^{\dagger})^i = (k-2)\sigma$$

The case of Chern-Simons

▶ The moduli space of

depends on n and k:

▶ k = 2: the superpotential is the one of the U(1) with n flavours. The Higgs branch is

$$\mathcal{H} = \{ M_j^i = Q^i \tilde{Q}_j \mid \mathsf{rank}(M) \leq 1 \text{ and } M^2 = 0 \} = \bar{\mathcal{O}}_{\mathsf{min}}^{\mathsf{SU}(n)}$$

The Coulomb branch is

$$\mathcal{C} = \{ (V_{\pm}, \varphi) \mid V_{+}V_{-} = \varphi^{n} \} = \mathbb{C}^{2}/\mathbb{Z}_{n}$$

- ▶ $k \neq 2$: If $(\varphi, \sigma) \neq 0$ F-terms implies $Q = \tilde{Q} = 0$, but this is in contraddiction with D-terms, hence $\mathcal{C} = \{0\}$. The Higgs branch is the same as before.
- $k \neq 2$ n = 1: trivial moduli space.

A model with G_2 gauge group

[IG, G. Lo Monaco, N. Mekareeya '19]

► Consider a circular quiver with alternating $G_2/USp(4)'$ gauge nodes:

▶ The dimensions of Higgs and Coulomb branch are equal:

$$\dim_{\mathbb{H}} \mathcal{H} = \dim_{\mathbb{H}} \mathcal{C} = 4n$$

- No brane construction.
- ► *USp*(4)' is consistent with the S-folding procedure in that nodes yielding to another self-mirror quiver.

S-folding the G_2 model

It is possibile to perform the S-folding procedure on the previous quiver both on the G_2 and on the USp(4)' nodes to get other two self-mirror models

$$\mathsf{dim}_{\mathbb{H}}\mathcal{H}=\mathsf{dim}_{\mathbb{H}}\mathcal{C}=2(2n{-}1)$$

$$\dim_{\mathbb{H}} \mathcal{H} = \dim_{\mathbb{H}} \mathcal{C} = 2(2n-1)$$

Supersymmetry enhancement

- ▶ The effective description of S-fold SCFTs amounts to gauge both Higgs and Coulomb branch symmetries of T[U(N)], leading to a naive breaking of the $SU(2) \times SU(2)$ R-symmetry to the diagonal SU(2), namely the theory should actually have $\mathcal{N}=3$ supersymmetry.
- ► In [Assel, Tomasiello '18] the following statements are made on the supersymmetry of this model at large N

- k=0: the theory has $\mathcal{N}=3$ supersymmetry
- ▶ $k \ge 3$ and n = 0: the theory has $\mathcal{N} = 4$ supersymmetry.
- ▶ In this talk we will discuss can study the actual amount of supersymmetry of this theory in the IR at **finite** *N* (low rank) via the **supersymmetric index**.

Supersymmetric Index

▶ The 3d supersymmetric index is defined as the partition function on $S^2 \times \mathbb{R}$

[Bhattacharya, Bhattacharyya, Minwalla, Raju, '08],...

$$\mathcal{I}(x, \boldsymbol{\mu}) = \operatorname{Tr}\left[(-1)^{2J_3} x^{\Delta + J_3} \prod_i \mu_i^{T_i} \right]$$

where

- ▶ Δ : energy in units of the S^2 radius (for SCFTs is related to the R-charge)
- ▶ J_3 : Cartan of the SO(3) isometry of S^2
- $ightharpoonup T_i$: charges for the global non-R symmetries.
- Expanding in series of x one can recast the index in the form

$$\mathcal{I}(x, \mu, \mathbf{n} = 0) = \sum_{p=0}^{\infty} \chi_p(\mu) x^p = 1 + a_1 x + a_2 x^2 + \dots$$

where $\chi_p(\mu)$ is the character of a certain representation of the global symmetry.

Classification of multiplets

 $\mathcal{N} = 2$ multiplets

[Razamat, Zafrir' 08], [Cordova, Dumitrescu, Intriligator '16]

Multiplet	Contribution to the modified index	Comment
$A_2 \bar{B}_1[0]_{1/2}^{(1/2)}$	$+x^{1/2}$	free fields
$B_1 \bar{A}_2[0]_{1/2}^{(-1/2)}$	$-x^{3/2}$	free fields
$L\bar{B}_{1}[0]_{1}^{(1)}$	+x	relevant operators
$L\bar{B}_{1}[0]_{2}^{(2)}$	$+x^2$	marginal operators
$A_2 \bar{A}_2 [0]_1^{(0)}$	$-x^2$	conserved currents

▶ Decomposition of $\mathcal{N}=3$ multiplets in $\mathcal{N}=2$ ones

Туре	$\mathcal{N}=3$ multiplet	
Flavour current	$B_1[0]_1^{(2)}$	$L\bar{B}_1[0]_1^{(1)} + B_1\bar{L}[0]_{-1}^{(1)} + A_2\bar{A}_2[0]_1^{(0)}$
Extra SUSY-current	$A_2[0]_1^{(0)}$	$A_2ar{A}_2[0]_1^{(0)} + A_1ar{A}_1[1]_{3/2}^{(0)}$
Stress tensor	$A_1[1]_{3/2}^{(0)}$	$A_1ar{A}_1[1]_{3/2}^{(0)}+A_1ar{A}_1[2]_2^{(0)}$

Observe that

$$(-a_2) - a_1 = \#(extra SUSY current multiplets)$$

An $\mathcal{N}=5$ model

Let us consider the abelian case for k=1 and n=1, corresponding to a $\mathcal{N}=3$ $U(1)_{-1}$ with 1 flavour. The index is:

$$\mathcal{I}(x;\omega) = 1 + x - x^2 (\omega + \omega^{-1} + 1) + x^3 (\omega + \omega^{-1} + 2) + \dots$$

- Interpretation of the various terms:
 - ► +x : there is an $\mathcal{N}=3$ flavour current $B_1[0]_1^{(2)}$, decomposing as

$$B_1[0]_1^{(2)} \to L\bar{B_1}[0]_1^{(1)} \oplus A_2\bar{A_2}[0]_1^{(0)}$$

 $(+x) \to (+x) \oplus (-x^2)$

- ▶ $+x^2[-(1+\omega+\omega^{-1})]$: there are two sets of $\mathcal{N}=3$ extra SUSY current multiplets $A_2[0]_1^{(0)}$, each carrying fugacities ω and ω^{-1} .
- From the analysis of the index it arises that the $U(1)_{-1}$ theory with 1 flavour gets enhanced from $\mathcal{N}=3$ to $\mathcal{N}=5$ in the IR.

$U(2)_k$ with no flavour

Consider the theory

- ▶ In [IG, Lo Monaco, Mekareeya, Sacchi '19] it is shown that the gauge group can also be taken to as SU(2).
- ▶ In particular, in [Gang, Yamazaki '18] it was shown that

▶ Supersymmetry is enhanced to $\mathcal{N}=4$ for all values of k such that $|k| \geq 4$ [IG, Lo Monaco, Mekareeya, Sacchi '19]

A model with two T-links

Let us take the theory

- ▶ The Z_{S^3} at large N for the theory $U(N)_{k_1} \times U(N)_{k_2}$ with $\pm (k_1k_2 2) > 2$ shows $\mathcal{N} = 4$ supersymmetry [Assel, Tomasiello '18]
- ► For N = 2 and different values of k_1 and k_2 the index shows that [IG, Lo Monaco, Mekareeya, Sacchi '19]:
 - ▶ the model with $(k_1, k_2) = (2, 3)$ is a new SCFT with $\mathcal{N} = 4$ supersymmetry
 - ▶ the theory with (2,-1) is the same as the one in the previous slide for $k=\pm 4$.

▶ Take the quiver (in $\mathcal{N} = 2$ language)

with superpotential

$$W = -\operatorname{tr}(A_1\varphi_1\tilde{A}_1 + A_2\varphi_2\tilde{A}_2) + \frac{1}{2}(k_1\varphi_1^2 + k_2\varphi_2^2) - 2\varphi_1\varphi_2.$$

► The vacuum equations are

$$A_{1}\varphi_{1} = \tilde{A}_{1}\varphi_{1} = 0, \quad A_{2}\varphi_{2} = \tilde{A}_{2}\varphi_{2} = 0$$

$$k_{1}\varphi_{1} - 2\varphi_{2} = (A_{1})_{a}(\tilde{A}_{1})^{a}, \quad k_{2}\varphi_{2} - 2\varphi_{1} = (A_{2})_{i}(\tilde{A}_{2})^{i}$$

where $a, b, c = 1, ..., n_1$ and $i, j, k = 1, ..., n_2$.

▶ For $\varphi_1 = \varphi_2 = 0$ and for every choice of (k_1, k_2) the vacuum equations admit a Higgs branch

$$\begin{split} \mathcal{H} &= \{ (M_1)_a^b = (A_1)_a (\tilde{A}_1)^b, \; (M_2)_i^j = (A_2)_i (\tilde{A}_2)^j \; | \\ & \text{rank}(M_{1,2}) \leq 1 \; , \; \; M_{1,2}^2 = 0 \} = \bar{\mathcal{O}}_{\min}^{SU(n_1)} \times \bar{\mathcal{O}}_{\min}^{SU(n_2)} \end{split}$$

▶ The branch fo which $\varphi_1 \neq 0$ and $\varphi_2 \neq 0$ is described by the equations

$$k_1\varphi_1=2\varphi_2\,,\qquad k_2\varphi_2=2\varphi_1\,,\qquad k_1k_2-4=0\,;$$
 admitting solutions only for $(k_1,k_2)=(2,2)$ or $(1,4)$.

▶ Take $(k_1, k_2) = (2, 2)$. From the vacuum equations

$$\varphi_1 = \varphi_2 \equiv \varphi, \quad m_1 = m_2 \equiv m$$

▶ The *R*-charge and gauge charge of $V_{(m,m)}$ are:

$$R[V_{(m,m)}] = \frac{1}{2}(n_1 + n_2)|m|, \quad q_1[V_{(m,m)}] = 0, \quad q_2[V_{(m,m)}] = 0.$$

 $V_{(m,m)}$ are gauge neutral and hence this branch is

$$\mathcal{C} = \{ (V_{\pm(1,1)}, \varphi) \mid V_{(1,1)}V_{-(1,1)} = \varphi^{n_1 + n_2} \} = \mathbb{C}^2 / \mathbb{Z}_{n_1 + n_2}$$

▶ For $(k_1, k_2) = (2, 2)$ the moduli space admit a clear separation into Higgs and Coulomb branch as $\mathcal{N} = 4$ theories, due to the fact that monopole operators are gauge neutral.

▶ Take $\varphi_1 \equiv \varphi \neq 0$ and $\varphi_2 = 0$. The vacuum equations imply that $k_1 = 0$ and that

$$A_1 = \tilde{A}_1 = 0$$
 $(A_2)_i (\tilde{A}_2)^i = -2\varphi.$

▶ Monopole fluxes (m_1, m_2) are of the form (m, 0). The R-charge and gauge charge of the monopoles are

$$R[V_{(m,0)}] = \frac{1}{2}n_1|m|, \qquad q_1[V_{(m,0)}] = 0, \qquad q_2[V_{(m,0)}] = 2m$$

▶ The gauge invariant (dressed) monopole operators are

$$(W^+)^{ij} = V_{(1,0)}(\tilde{A}_2)^i(\tilde{A}_2)^j$$
, $(W^-)_{ij} = V_{(-1,0)}(A_2)_i(A_2)_j$.

and satisfy the quantum relation

$$(W^+)^{ij}(W^-)_{ji} = \varphi^{n_1+2}$$
.

that is a "mixed" Higgs/Coulomb branch.

Conclusion and Outlook

Summary

- ▶ A large class of 3d SCFTs obtained by inserting an $SL(2,\mathbb{Z})$ duality wall into the Type IIB brane system.
- ► The dynamics of these branes through mirror symmetry
- Supersymmetry in the IR via the supersymmetric index.

Outlook

- ▶ Engineering of the models with G_2 gauge groups either from brane picture or from F-theory.
- Extend these class of theories to lower supersymmetry, e.g. $\mathcal{N}=2$ models.

Thank you!

T[U(1)] theory

► The action for the following quiver [Kapustin, Strassler '99]

$$1_{k_1} \underbrace{T[U(1)]}_{k_2}$$

in the $\mathcal{N}=2$ notation, is given by

$$\begin{split} & \int \mathsf{d}^3 x \mathsf{d}^4 \theta \, \left(\frac{k_1}{4\pi} \Sigma_1 \, V_1 + \frac{k_2}{4\pi} \Sigma_2 \, V_2 - \frac{1}{4\pi} \Sigma_1 V_2 - \frac{1}{4\pi} \Sigma_2 V_1 \right) \\ & - \int \mathsf{d}^3 x \mathsf{d}^2 \theta \, \left(\frac{k_1}{4\pi} \Phi_1^2 + \frac{k_2}{4\pi} \Phi_2^2 - \frac{1}{2\pi} \Phi_1 \Phi_2 + \text{c.c.} \right) \, . \end{split}$$

The various terms are

$$\Sigma_{i=1,2}$$
 $\mathcal{N}=2$ linear multiplet $V_{i=1,2}$ $\mathcal{N}=2$ vector multiplet $\Phi_{i=1,2}$ $\mathcal{N}=2$ χ -plet inside the $\mathcal{N}=4$ v-plet

T[SU(2)] vs T[U(2)]

- ▶ Given the index for T[SU(2)] $\mathcal{I}_{T[(SU(2)]}(\{\mu, \mathbf{n}\}, \{\tau, \mathbf{p}\})$, one has to impose the conditions $\mu_1\mu_2 = \tau_1\tau_2 = 1$ and $n_1 + n_2 = p_1 + p_2 = 0$ on fugacities and fluxes.
- ▶ The index of T[U(2)] is

$$\begin{split} &\mathcal{I}_{T(U(2))}(\{\boldsymbol{\mu},\mathbf{n}\},\{\boldsymbol{\tau},\mathbf{p}\})\\ &= \left[\prod_{i=1}^2 \mathcal{I}_{T(U(1))}(\{\mu_i,n_i\},\{\tau_i,p_i\})\right] \times \mathcal{I}_{T(SU(2))}(\{\boldsymbol{\mu},\mathbf{n}\},\{\boldsymbol{\tau},\mathbf{p}\}) \end{split}$$

- ▶ No need to impose any constraint
- ▶ T[U(2)] self-mirror property translated into invariance of $\mathcal{I}_{T(U(2))}(\{\mu, \mathbf{n}\}, \{\tau, \mathbf{p}\})$ under $\mu \leftrightarrow \tau$, $\mathbf{n} \leftrightarrow \mathbf{p}$.