# Localized nonlinear gravitational waves - "geons" in asymptotically anti de Sitter space-times 

in collaboration with
Gyula Fodor (Wigner Research Centre for Physics, Budapest) Philippe Grandclément and Grégoire Martinon (Observatoire de Paris, Meudon)

Pisa, 17 July 2019
"Particle"-like - localized - solutions

- finite energy, spatially localized, size $(\sim L)$ for times $T \gg L / c$
- nonlinearity is essential
- may be the size of particles, stars or galaxies

In many cases there are no time-independent configurations

- but there are solutions oscillating in time
- Real scalar fields in Minkowski space-time:
- oscillons (pulsons) exist in dims. $D=1,2,3,4$
- Real scalar coupled to Einstein gravity: oscillaton
- Complex scalar with static metric: boson star
- Gravitational or electromagnetic waves: geon

Spherically symmetric real scalar field, with self-interaction potential $U(\phi)$, in case of $d$ spatial dimensions

$$
-\frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{d-1}{r} \frac{\partial \phi}{\partial r}=U^{\prime}(\phi)
$$

Exactly time-periodic, localized, finite energy solution only exist for $d=1$ and $U(\phi)=1-\cos \phi$
sine-Gordon breather


There are "almost-breather" solutions, weakly emitting energy by scalar field radiation, having a slowly changing frequency

## Discovery of pulsons

Potential: sine-Gordon or $U(\phi)=\frac{1}{4}\left(\phi^{2}-1\right)^{2}$

- spherically symmetry

Numerical solutions in $d=3$ spatial dimensions
Bogolyubskii and Makhan'kov, JETP Letters, 25, 107 (1977)
Evolution of the scalar field at the center:


Sudden decay after a few thousands oscillations

- no such decay for $d=1$ and $d=2$

Pulsons were renamed oscillons by Marcelo Gleiser in 1995

Seidel and Suen (1991): numerical observation of spherically symmetric, localized, oscillating solutions for a self-gravitating, real scalar field coupled to gravity - oscillaton

- no sudden decay observed numerically for oscillatons
- slow radiation of energy $\rightarrow$ slowly changing frequency
- lifetime is "infinite"

general structure of oscillons/pulsons and oscillatons
the tail is a very small amplitude outgoing wave

If the central amplitude is $\varepsilon$, then the tail amplitude is
proportional to $\exp \left(-\frac{1}{\varepsilon}\right) \rightarrow$ radiation rate decreases in time

## $1+\mathrm{D}$ dimensional anti-de Sitter space-time

$A d S_{1+D}$ is the maximally symmetric Lorentzian manifold $(O(2, D))$ with constant negative scalar curvature. Its line element in Schwarzschild area coordinates:

$$
d s^{2}=-\left(1+k^{2} r^{2}\right) d t^{2}+\frac{d r^{2}}{1+k^{2} r^{2}}+r^{2} d \Omega_{D-1}^{2}
$$

This metric satisfies Einstein's equations with negative cosmological constant $G_{\mu \nu}+\Lambda g_{\mu \nu}=0$, where $\Lambda=-\frac{1}{2} D(D-1) k^{2}$. An observer at a fixed $r$ undergoes constant outwards acceleration:

$$
a=\frac{k^{2} r}{\sqrt{1+k^{2} r^{2}}} \xrightarrow[r \rightarrow \infty]{ } k
$$

AdS background corresponds to an effective attractive force

## $D=3$ AdS spacetime in compactified coordinates



Global spatially compactified coordinates

$$
\mathrm{d} s^{2}=\frac{L^{2}}{\cos ^{2} x}\left(-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\sin ^{2} x \mathrm{~d} \Omega^{2}\right)
$$

where $L^{2}=-3 / \Lambda$

- each point corresponds to a 2-sphere with radius $L \tan x$
- metric is static in these coordinates
- center is at $x=0$, infinity at $x=\frac{\pi}{2}$
- range of time coordinate: $-\infty<t<\infty$
- radial outwards acceleration of constant $x$ observers is $\frac{\sin x}{L}$
- timelike geodesics meet again at a point


## Instability of anti-de Sitter spacetime



A light ray can travel to infinity and back in a finite time
This is related to the (conjectured) instability of AdS

- a wave packet can bounce back many times to the center, it becomes more and more concentrated, and in the end it collapses to a black hole
- smaller amplitude $\longrightarrow$ more bounces needed
- demonstrated numerically by Bizoń and Rostworowski in 2011 for a spherically symmetric massless scalar field coupled to gravity

The assumption of reflective boundary conditions is essential

- energy cannot disperse at infinity
$-\Lambda<0$ is like a bounding box


## Klein-Gordon breather on AdS background

Consider 1st (minimally coupled) KG equation on AdS bckg:

$$
\nabla^{\mu} \nabla_{\mu} \phi=m^{2} \phi, \quad m^{2} \geq 0
$$

and assume spherical symmetry:

$$
-\frac{\partial^{2} \phi}{\partial \tau^{2}}+\frac{\partial^{2} \phi}{\partial x^{2}}+2 \frac{D-1}{\sin (2 x)} \frac{\partial \phi}{\partial x}=\frac{m^{2}}{k^{2} \cos ^{2} x} \phi
$$

This eq. admits breathers: $\phi=p(x) \cos (\omega \tau / k)$ with $p(x)$ regular $\phi(t, x)$ localized in space and time-periodic! in asymptotically flat (or deSitter) $D>1$ space-times $\nexists$ breathers! exceptions $\rightarrow$ " $V$ "-shaped potentials, signum-Gordon (H. Arodź et al.)
for $\phi=p(x) \cos (\omega \tau / k)$ the AdS KG eq. becomes:

$$
\frac{d^{2} p}{d x^{2}}+2 \frac{D-1}{\sin (2 x)} \frac{d p}{d x}=\frac{m^{2}}{k^{2} \cos ^{2} x} p-\frac{\omega^{2}}{k^{2}} p
$$

generic solution for $p(x)$ is singular either at $x=0$ or $x=\pi / 2$
If the frequency takes on special values:

$$
\omega=\omega_{+}=\left(\lambda_{+}+2 n\right) k \quad \lambda_{ \pm}=\frac{1}{2}\left(D \pm \sqrt{D^{2}+4 \frac{m^{2}}{k^{2}}}\right)
$$

for $n \geq 0$ integer, then $p(x)$ is globally regular and the breathers:

$$
\phi_{n}^{+}=\cos \left(\frac{\omega_{+}}{k} \tau\right)(\cos x)^{\lambda_{+}} P_{n}^{\left(D / 2-1, \lambda_{+}-D / 2\right)}(\cos (2 x))
$$

$P_{n} \rightarrow$ Jacobi polynomial

Simplest explicit solutions:

$$
\begin{aligned}
& \phi_{0}^{ \pm}=\cos \left(\frac{\omega_{ \pm}}{k} \tau\right)(\cos x)^{\lambda_{ \pm}} \\
& \phi_{1}^{ \pm}=\cos \left(\frac{\omega_{ \pm}}{k} \tau\right)(\cos x)^{\lambda_{ \pm}}\left[\frac{D}{2}-\left(\lambda_{ \pm}+1\right) \sin ^{2} x\right]
\end{aligned}
$$



Periodic solutions for $m=0$ in $3+1$ spacetime dimensions at time $t=0$

Solutions for $m>0$ are similar, but more compact

Numerical simulations $\longrightarrow$ all these solutions are stable

## Scalar breathers in asymptotically AdS spacetime

Einstein's equations coupled to a massless real scalar field:

$$
G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu} \quad, \quad T_{\mu \nu}=\phi_{, \mu} \phi_{, \nu}-\frac{1}{2} g_{\mu \nu} \phi_{, \alpha} \phi^{, \alpha}
$$

together with the wave equation

$$
\nabla^{\mu} \nabla_{\mu} \phi=0
$$

look for spherically symmetric solutions:

$$
\mathrm{d} s^{2}=\frac{L^{2}}{\cos ^{2} x}\left(-A e^{-2 \delta} \mathrm{~d} t^{2}+\frac{1}{A} \mathrm{~d} x^{2}+\sin ^{2} x \mathrm{~d} \Omega_{D-1}^{2}\right)
$$

where $A=A(t, x)$ and $\delta=\delta(t, x) ; L^{2}=-D(D-1) / 2 / \Lambda$

- anti-de Sitter space-time corresponds to $A=1$ and $\delta=0$


## Small-amplitude expansion

The scalar field and the metric functions are expanded in powers of a small parameter $\varepsilon$
$\phi=\sum_{n=0}^{\infty} \phi^{(2 n+1)} \varepsilon^{2 n+1}, \quad A=1+\sum_{n=1}^{\infty} A^{(2 n)} \varepsilon^{2 n}, \quad \delta=\sum_{n=1}^{\infty} \delta^{(2 n)} \varepsilon^{2 n}$
To first order in $\varepsilon$ : the metric is $\operatorname{AdS}, \phi^{(1)}(x, t)$ is given as:

$$
\phi^{(1)}(x, t)=p_{m}(x) \cos \left(\omega_{m} t\right) \quad, \quad m \geq 0 \text { integer }
$$

$p_{m}(x)$ can be given with Jacobi polynomials, and the allowed frequencies are

$$
\omega_{m}=d+2 m,
$$

in leading order $\rightarrow \phi(x, t)=\phi^{(1)}(x, t)$ is spatially localized, time-periodic.
in higher orders in the $\varepsilon$ expansion

$$
\begin{equation*}
\omega=\omega^{(0)}\left(1+\sum_{j=1}^{\infty} \omega^{(j)} \varepsilon^{j}\right), \quad \omega^{(0)}=\omega_{n} \tag{1}
\end{equation*}
$$

There is a one-parameter family of solutions emerging from each $p_{n}$ linearized mode
The mass of the "breathers" in the perturbative small amplitude expansion

$$
\begin{equation*}
m=\frac{\pi}{32} \varepsilon^{2}+m_{4}(D) \varepsilon^{4}+\ldots, m_{4}(D=3) \approx-1.05316 \tag{2}
\end{equation*}
$$

$\varepsilon$ determines the value of the amplitude of the field at the center at $t=0$

## numerical vs. perturbative results

comparing the numerical results to the perturbative (small- $\varepsilon$ ) expansion:


AdS breather becomes unstable when the total mass starts to decrease with increasing central density

Perturbative expansion is in excellent agreement with the numerical results up to $\varepsilon \approx 1$.

## AdS gravitational breathers - geons

Localized time-periodic vacuum solutions with regular center and no horizon for $\Lambda<0$

- typical size given by the length-scale $L=\sqrt{-\frac{3}{\Lambda}}$

There are no spherically symmetric vacuum geon solutions
Small-amplitude expansion: consider a one-parameter family of solutions depending on a parameter $\varepsilon$, and expand the metric as

$$
g_{\mu \nu}=\sum_{k=0}^{\infty} \varepsilon^{k} g_{\mu \nu}^{(k)}
$$

$g_{\mu \nu}^{(0)}$ is the AdS metric

$$
\mathrm{d} s_{(0)}^{2}=\frac{L^{2}}{\cos ^{2} x}\left[-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\sin ^{2} x\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

$g_{\mu \nu}^{(0)}$ has components that diverge as $\left(\frac{\pi}{2}-x\right)^{-2}$ at infinity
We require that for $k \geq 1$ all $g_{\mu \nu}^{(k)}$ diverge at most as $\left(\frac{\pi}{2}-x\right)^{-1}$
$\longrightarrow g_{\mu \nu}$ is asymptotically AdS
We use real spherical harmonics $\mathbb{S}_{/ m}$

- defined for $I \geq 0$ and $-I \leq m \leq I$ integers
- $\phi$ dependence is $\cos (m \phi)$ for $m \geq 0$, and $\sin (|m| \phi)$ for $m<0$


## Spherical harmonic decomposition

## Tensors can be decomposed into

- scalar-type part (polar, even parity)
- vector-type part (axial, odd parity)
- tensor-type part - only for $d \geq 4$ space dimensions

Vector spherical harmonics $\mathbb{V}_{(I m) i}$ for $d=3$ has the components

$$
\mathbb{V}_{(I m) \theta}=\frac{1}{\sqrt{I(I+1)}} \frac{1}{\sin \theta} \frac{\partial \mathbb{S}_{/ m}}{\partial \phi}, \quad \mathbb{V}_{(I m) \phi}=\frac{-1}{\sqrt{I(I+1)}} \sin \theta \frac{\partial \mathbb{S}_{I m}}{\partial \theta}
$$

Perturbations for each $I$, $m$ can be considered separately

- they are only coupled by lower order terms in the $\varepsilon$ expansion

For each choice of $I$ and $m$, and at each $k$ order in the $\varepsilon$ expansion

- scalar-type perturbations are described by the function $\Phi_{I m}^{(k, s)}$
- vector-type perturbations are described by the function $\Phi_{l m}^{(k, v)}$

All these scalars satisfy the equations (dropping the indices)

$$
-\frac{\partial^{2} \Phi}{\partial t^{2}}+\frac{\partial^{2} \Phi}{\partial x^{2}}-\frac{I(I+1)}{\sin ^{2} x} \Phi=\frac{\bar{\Phi}}{\sin ^{2} x}
$$

where $\bar{\Phi}$ are known functions of $t, x$, already determined at lower than $k$ order in $\varepsilon$
Boundary conditions: metric perturbation be asymptotically AdS:

- for vector-type perturbations $\lim _{x \rightarrow \frac{\pi}{2}} \Phi=0$
- for scalar-type perturbations $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\mathrm{~d} \Phi}{\mathrm{~d} x}=0$

Perturbations of the metric can be calculated from these functions by taking derivatives and algebraic manipulations

## Periodic solutions at linear order

At order $\varepsilon^{1}$ there is no inhomogeneous source term: $\bar{\Phi}=0$
Search solutions in the form $\Phi=p(x) \cos (\omega t)$
Centrally regular and asymptotically AdS solutions only exist:

- scalar-type perturbations: $\omega=I+1+2 n, n \geq 0$ integer

$$
p(x)=\sin ^{I+1} x \frac{n!}{\left(I+\frac{3}{2}\right)_{n}} P_{n}^{\left(I+\frac{1}{2},-\frac{1}{2}\right)}(\cos (2 x))
$$

- vector-type perturbations: $\omega=I+2+2 n, n \geq 0$ integer

$$
p(x)=\sin ^{I+1} x \cos x \frac{n!}{\left(I+\frac{3}{2}\right)_{n}} P_{n}^{\left(I+\frac{1}{2}, \frac{1}{2}\right)}(\cos (2 x))
$$

where the Pochhammer's Symbol is $(c)_{n}=\Gamma(c+n) / \Gamma(c)$ and $P_{n}^{\alpha, \beta}(z)$ are Jacobi polynomials
$n$ gives the number of radial nodes (zero crossings)

For each $(I, m, n)$, where $I \geq 2,|m| \leq I, n \geq 0$ integers, there is a scalar- and a vector-type linear geon mode with arbitrary amplitude

The frequency for scalar-type: $\omega=I+1+2 n$ for vector-type: $\omega=I+2+2 n$

Since all frequencies are integers, an arbitrary linear combination of these modes is still a time-periodic solution with $\omega=1$
$\longrightarrow$ infinite-parameter family of linear geons
The nonlinear system only has one-parameter families of AdS geon solutions

- true for all cases studied by the nonlinear expansion formalism - started with finite number of parameters
- supported by direct numerical search for time-periodic solutions of the Einstein's equations
- proof ???


## Inhomogeneous scalar equation at higher orders in $\varepsilon$

$$
-\frac{\partial^{2} \Phi}{\partial t^{2}}+\frac{\partial^{2} \Phi}{\partial x^{2}}-\frac{I(I+1)}{\sin ^{2} x} \Phi=\frac{\bar{\Phi}}{\sin ^{2} x}
$$

homogeneous solutions with frequency $\omega$
scalar-type: $\omega=I+1+2 n$
vector-type: $\omega=I+2+2 n$
sum of source terms of the type

$$
\bar{\Phi}=p_{0}(x) \sin \left(\omega_{s} t\right) \text { or }
$$

$$
\bar{\Phi}=p_{0}(x) \cos \left(\omega_{s} t\right)
$$

If $\omega \neq \omega_{s}$ for all $n \geq 0$ integers, there are always time-periodic solutions which are asymptotically AdS and have a regular center
If $\omega=\omega_{s}$ for some $n$, then $\bar{\Phi}$ is a resonant source term

- generally, regular asymptotically AdS solutions for $\Phi$ are blow-up solutions of the type $t \cos (\omega t)$
- time-periodic solution for a resonant source term only exists if a consistency condition holds


## Consistency conditions

Time-periodic centrally regular asymptotically AdS geon solution can only exist, if for each resonant source term, having the form $\bar{\Phi}=p_{0}(x) \sin \left(\omega_{s} t\right)$, a consistency condition holds

$$
\int_{0}^{\frac{\pi}{2}} \frac{p_{l, n}(x) p_{0}(x)}{\sin ^{2} x} \mathrm{~d} x=0
$$

where $p_{l, n}(x)$ is the regular solution of the homogeneous equation
The consistency conditions determine

- the change of physical frequency $\bar{\omega}$ as a function of $\varepsilon$
- ratio of the modes included at linear order

If the consistency conditions cannot be satisfied
$\Longrightarrow$ terms with linearly increasing amplitude $t \cos (\omega t)$
$\longrightarrow$ shift of energy to higher frequency modes
$\rightarrow$ turbulent instability $\rightsquigarrow$ black hole formation

Natural simplest case: start with only one mode at linear order
There is a scalar and a vector mode for each $I \geq 2,|m| \leq I, n \geq 0$

- denote them by $\left(I, m, n, \omega_{s}\right)_{S}$, $\left(I, m, n, \omega_{v}\right)_{V}$ where $\omega_{s}=I+1+2 n$ and $\omega_{v}=I+2+2 n$

For some single linear modes there is no corresponding nonlinear AdS geon solution (Dias, Horowitz, Santos)

- consistency conditions cannot be solved at $\varepsilon^{3}$ order
- examples: $(2,0,1,5)_{S},(4,0,0,5)_{S},(3,2,0,4)_{S},(2,2,0,4)_{V}$

Resolution: take the linear combination of same frequency modes at linear order in $\varepsilon$ (Rostworowski)
$\left.\begin{array}{l}(2,0,1,5)_{S} \text { with amplitude } \alpha \\ (4,0,0,5)_{S} \text { with amplitude } \beta\end{array}\right\} \longrightarrow \frac{\alpha}{\beta} \approx 0.12909$ or -152.52
$\longrightarrow$ two one-parameter families with frequency $\omega=5$ ( $m=0$ corresponds to axial symmetry)

There are non-rotating non-axially-symmetric geons
Example: $\left(I, m, n, \omega_{s}\right)_{S}=(2,2,0,3)_{S}$

- angular dependence of the linearized solution is $\cos (2 \phi)$
- there is a corresponding nonlinear solution
- it has zero angular momentum

Taking identical-amplitude linear combination of $(2,2,0,3)_{S}$ and $(2,-2,0,3)_{S}$ with a shift in time phase, we get a rotating linearized solution, which corresponds to a rotating nonlinear geon with a helical Killing vector

After solving the consistency conditions at $\varepsilon^{3}$ order, two-parameter families of solutions may remain. They split into two one-parameter families because of the conditions at $\varepsilon^{5}$ order

Example: the one-parameter family of non-rotating geons generated by $\left(I, m, n, \omega_{s}\right)_{S}=(2,2,0,3)_{S}$, and the axially symmetric one-parameter family generated by $(2,0,0,3)_{S}$, appear to be a single two-parameter family at $\varepsilon^{3}$ order
$\longrightarrow$ it is important to go as high as $\varepsilon^{5}$ order in the expansion
It is necessary to use algebraic manipulation programs (Maple, Mathematica)

Same-frequency linear modes should be treated together
Lowest frequency is $\omega=3$, belonging to $I=2, n=0$ scalar modes We have constructed all AdS geon solutions that in the small-amplitude limit reduce to $\omega=3$ modes only
There are five such modes, belonging to $m=-2,-1,0,1,2$, each of them can have $\cos (3 t)$ or $\sin (3 t)$ time dependence $\longrightarrow$ there are 10 independent amplitude constants
Solutions are considered equivalent if they can be transformed into each other by time shift and spatial rotation
Result of detailed analysis up to $\varepsilon^{5}$ order :
There are 5 nonequivalent one-parameter families that reduce to $\omega=3$ frequency modes only
$t=0 \quad t=\frac{\pi}{12} \quad t=\frac{\pi}{6} \quad t=\frac{\pi}{4} \quad t=\frac{\pi}{3}$

$(2,0,0,3) s \times \cos (3 t)$

$(2,2,0,3)_{s} \times \cos (3 t)$

$(2,2,0,3)_{s} \times \cos (3 t)$ $+(2,0,0,3)_{s} \times \sin (3 t)$

$(2,1,0,3)_{s} \times \cos (3 t)$ $+(2,-1,0,3)_{s} \times \sin (3 t)$

$(2,2,0,3)_{s} \times \cos (3 t)$
$+(2,-2,0,3)_{s} \times \sin (3 t)$

## Numerical method

KADATH library - multi-domain spectral method

- developed by Philippe Grandclément at Paris Observatory

Maximal slicing ( $K=0$ ) and harmonic coordinates in space

- De-Turck method

Start from a linearized solution - increase the amplitude in steps

- typical resolution: radial 37 , angular $9 \times 9$
- typical running time: several days on hundreds of processors

Frequency - angular momentum relation for $\left(I, m, n, \omega_{s}\right)_{S}=(2, \pm 2,0,3)_{S}$ helically rotating geons


Helically symmetric rotating geons from the PhD Thesis of Gregoire Martinon 2017 isocontours of $g_{t t}-\quad(I, m, n, \omega)$


Three one-parameter families from the linear combination of $(2, \pm 2,1,5)_{S},(4, \pm 2,0,5)_{S},(3, \pm 2,0,5)_{v}$


## Outlook - things to do

- Investigate non-rotating AdS geons
- with or without axial symmetry
- analytically and numerically
- Improve numerical method to reach maximal mass geons
- Study the stability of geons
- $3+1$ dimensional time-evolution code
- Construction of asymptotically flat geons ...

