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“Particle”-like - localized - solutions

— finite energy, spatially localized, size (~ L) for times T > L/c
— nonlinearity is essential
— may be the size of particles, stars or galaxies

In many cases there are no time-independent configurations
— but there are solutions oscillating in time

@ Real scalar fields in Minkowski space-time:

e oscillons (pulsons) exist in dims. D =1,2,3,4

@ Real scalar coupled to Einstein gravity: oscillaton

@ Complex scalar with static metric: boson star

@ Gravitational or electromagnetic waves: geon
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Spherically symmetric real scalar field, with self-interaction
potential U(¢), in case of d spatial dimensions
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Exactly time-periodic, localized, finite energy solution only exist
ford =1and U(¢) =1—cos¢

sine-Gordon breather

There are “almost-breather” solutions, weakly emitting energy by
scalar field radiation, having a slowly changing frequency
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Discovery of pulsons

Potential: sine-Gordon or U(¢) = %(¢2 —1)2
— spherically symmetry

Numerical solutions in d = 3 spatial dimensions
Bogolyubskii and Makhan'kov, JETP Letters, 25, 107 (1977)

Evolution of the scalar field at the center:
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Sudden decay after a few thousands oscillations
— no such decay ford =1 and d =2

Pulsons were renamed oscillons by Marcelo Gleiser in 1995
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Seidel and Suen (1991): numerical observation of spherically
symmetric, localized, oscillating solutions for a self-gravitating, real
scalar field coupled to gravity — oscillaton

— no sudden decay observed numerically for oscillatons
— slow radiation of energy — slowly changing frequency

— lifetime is “infinite”

general structure of
oscillons/pulsons and oscillatons

the tail is a very small amplitude
outgoing wave

If the central amplitude is ¢, then the tail amplitude is

. 1 . .
proportional to exp <—) — radiation rate decreases in time
€
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14D dimensional anti-de Sitter space-time

AdS; p is the maximally symmetric Lorentzian manifold (O(2, D))
with constant negative scalar curvature. Its line element in
Schwarzschild area coordinates:

dr?

2 2.2 2
ds ——(1+kr)dt +W

+r2dQ3 .

This metric satisfies Einstein’s equations with negative

cosmological constant G, + Ag,,, = 0, where A = —%D(D - 1)k2.

An observer at a fixed r undergoes constant outwards acceleration:
k2r

= V1+k2r2  r—oo g

AdS background corresponds to an effective attractive force
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D = 3 AdS spacetime in compactified coordinates

Global spatially compactified coordinates

timelike geodesic
null geodesic

t=n/2

ds® =

(—dt2 + dx? + sin® de2)
cos? x

where L2 = —3/A\

— each point corresponds to a 2-sphere
with radius Ltanx

center
infinity

metric is static in these coordinates

center is at x = 0, infinity at x = 5

range of time coordinate: —oco < t < 00

radial outwards acceleration of

e constant x observers is =7

0 "2 — timelike geodesics meet again at a point
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Instability of anti-de Sitter spacetime

t=3n A light ray can travel to infinity and back in a finite time
This is related to the (conjectured) instability of AdS
— a wave packet can bounce back many times to the
center, it becomes more and more concentrated, and
t=2n in the end it collapses to a black hole
5 2 —smaller amplitude — more bounces needed
g E — demonstrated numerically by Bizon and Rostworowski
in 2011 for a spherically symmetric massless scalar
t=n field coupled to gravity
The assumption of reflective boundary conditions
is essential
o — energy cannot disperse at infinity
— A < 0 is like a bounding box
x=0 x=n/2
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Klein-Gordon breather on AdS background

Consider 1st (minimally coupled) KG equation on AdS bckg:
VIV, ¢ = m?p, m? >0

and assume spherical symmetry:

2 2 2
_ng * gxf * 2S|n(2>;l) gi ﬁqﬁ
This eq. admits breathers: ¢ = p(x) cos(w7/k) with p(x) regular
¢(t, x) localized in space and time-periodic!
in asymptotically flat (or deSitter) D > 1 space-times 3 breathers!
exceptions — “V"-shaped potentials, signum-Gordon (H. Arodz et

al.)
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for ¢ = p(x) cos(wt/k) the AdS KG eq. becomes:

d?p D—1 dp m? w?
a2 T dx  Kloo2xP T 2P
dx sin(2x) dx k2 cos? x k

generic solution for p(x) is singular either at x =0 or x = 7/2

If the frequency takes on special values:

1 ) m?

for n > 0 integer, then p(x) is globally regular and the breathers:
¢ = cos (%T) (cos x)** p{P/2=1A=D/2) (cos(2x))

P, — Jacobi polynomial

Péter Forgacs: Geons 10/32



Simplest explicit solutions:
w
bF = cos (TiT) (cos x)*

D
¢f = cos (%T) (cos x)M= [2 — (Ax +1)sin® x

2.5 —
n=0 ——
D=3 2;% - Periodic solutions for
t”j;" =3 —— | m=0in3+1
spacetime dimensions at
¢ time t =0
Solutions for m > 0 are
e P
0 W similar, but more
05 : compact

0O 02 04 06 08 1 12 14
X

Numerical simulations — all these solutions are stable
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Scalar breathers in asymptotically AdS spacetime

Einstein's equations coupled to a massless real scalar field:

1
GMV + /\gl“/ = 87TGTW/ 5 ,u,y — ¢ ud) v Eg;u/(b,ozd)’a
together with the wave equation

VAV, =0

look for spherically symmetric solutions:

L2

ds® = 5
cos? x

1
(—Aez‘sdt 2 4 Zdx? +sin x dQ%_1>

A

where A = A(t,x) and 6 = 6(t,x); L> = —D(D — 1)/2/N\

— anti-de Sitter space-time corresponds to A=1and 6 =0
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Small-amplitude expansion

The scalar field and the metric functions are expanded in powers of
a small parameter ¢

b= Z¢(2n+1)62n+1 ., A=1+ ZA(2n)€2n , = 26(2’7)62”
n=0 n=1 n=1
To first order in &: the metric is AdS, #(!)(x, t) is given as:
¢M(x, 1) = pm(x)cos(wmt) , m >0 integer

pm(x) can be given with Jacobi polynomials, and the allowed
frequencies are
wm=d+2m,

in leading order — ¢(x, t) = ¢()(x, t) is spatially localized,
time-periodic.
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in higher orders in the £ expansion

o0

j=1
There is a one-parameter family of solutions emerging from each
pn linearized mode

The mass of the “breathers” in the perturbative small amplitude
expansion

m= %52 + my(D)e* + ..., ma(D =3)~—-1.05316. (2)

¢ determines the value of the amplitude of the field at the center
att=20
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numerical vs. perturbative results

comparing the numerical results to the perturbative (small-¢)

expansion:
0.35
—
0.3 /_ order &2
unstable | stable order ¢*
0.2 s AdS breather becomes
02 unstable when the total
£
0.15 mass starts to decrease
o1 with increasing central
P densit
0.05 & y
o
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®

Perturbative expansion is in excellent agreement with the
numerical results up to € ~ 1.
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AdS gravitational breathers — geons

Localized time-periodic vacuum solutions with regular center and
no horizon for A < 0

— typical size given by the length-scale L = —%

There are no spherically symmetric vacuum geon solutions

Small-amplitude expansion: consider a one-parameter family of
solutions depending on a parameter €, and expand the metric as

ng (k)
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g,(fi) is the AdS metric

dslyy = ——5— [~dt® + dx® + sin® x(d0? + sin® 0d¢?)]

cos? x

gff,i) has components that diverge as (g — x) 2 at infinity

™

We require that for k > 1 all g,gl;) diverge at most as (5 — )71
— g is asymptotically AdS

We use real spherical harmonics S,
o defined for / > 0 and —/ < m < [ integers
@ ¢ dependence is cos(m¢) for m > 0, and sin(|m|¢) for m < 0
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Spherical harmonic decomposition

Tensors can be decomposed into

@ scalar-type part (polar, even parity)
@ vector-type part (axial, odd parity)
@ tensor-type part — only for d > 4 space dimensions

Vector spherical harmonics V;,); for d = 3 has the components

v, o1 1 OSim __ 1 . pBm
o= i+ 1)sing 9o~ UM 51y T 06

Perturbations for each I, m can be considered separately
— they are only coupled by lower order terms in the £ expansion
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For each choice of / and m, and at each k order in the £ expansion

(kss)

— scalar-type perturbations are described by the function ®; -

— vector-type perturbations are described by the function CDS,I;’V)

All these scalars satisfy the equations (dropping the indices)

> N >0 (1+1), _ ®
ot2 = 0x? sin?x  sin?x J

where ® are known functions of t, x, already determined at lower

than k order in ¢

Boundary conditions: metric perturbation be asymptotically AdS:
@ for vector-type perturbations lim ¢ =0

s
X—r5

) .o d
o for scalar-type perturbations lim — =0
x—>§ X
Perturbations of the metric can be calculated from these functions

by taking derivatives and algebraic manipulations
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Periodic solutions at linear order

At order £! there is no inhomogeneous source term: ® =0
Search solutions in the form ® = p(x) cos(wt)

Centrally regular and asymptotically AdS solutions only exist:

— scalar-type perturbations: |w =/+1+ 2n| , n > 0 integer

S LN C S E)
p(X) = Sin + men 272 (C05(2X))

— vector-type perturbations: |w =/+2+ 2n| , h >0 integer

. n! (+31.1)
p(x) = sin'™ xcos x——=—P;, ' 2?(cos(2x))
I+ 3)n "
where the Pochhammer’s Symbol is (¢), = (¢ + n)/T(c)

and P,o,"ﬁ(z) are Jacobi polynomials

n gives the number of radial nodes (zero crossings)
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For each (/, m, n), where | > 2, |m| < I, n > 0 integers, there is a
scalar- and a vector-type linear geon mode with arbitrary amplitude

The frequency for scalar-type: w =141+ 2n
for vector-type: w =142+ 2n

Since all frequencies are integers, an arbitrary linear combination of
these modes is still a time-periodic solution with w =1
— infinite-parameter family of linear geons

The nonlinear system only has one-parameter families of AdS geon
solutions

@ true for all cases studied by the nonlinear expansion formalism
— started with finite number of parameters

@ supported by direct numerical search for time-periodic
solutions of the Einstein’s equations

@ proof 777
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Inhomogeneous scalar equation at higher orders in ¢

e o6 I(I+1), @

ot2  0x? sin? x ~ sin?x
homogeneous solutions sum of source terms
with frequency w of the type
scalar-type: w =141+ 2n & = po(x)sin(wst) or

vector-type: w =1+2+2n ® = po(x) cos(wst)

If w # ws for all n > 0 integers, there are always time-periodic
solutions which are asymptotically AdS and have a regular center

If w = ws for some n , then ® is a resonant source term
— generally, regular asymptotically AdS solutions for ¢
are blow-up solutions of the type t cos(wt)
— time-periodic solution for a resonant source term
only exists if a consistency condition holds
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Consistency conditions

Time-periodic centrally regular asymptotically AdS geon solution
can only exist, if for each resonant source term, having the form
® = po(x)sin(wst), a consistency condition holds

/75 PLa(¥)Po(x) | 4
0

sin? x

where p; ,(x) is the regular solution of the homogeneous equation

The consistency conditions determine
— the change of physical frequency & as a function of ¢
— ratio of the modes included at linear order

If the consistency conditions cannot be satisfied
= terms with linearly increasing amplitude t cos(wt)
— shift of energy to higher frequency modes
--» turbulent instability ~- black hole formation
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Natural simplest case: start with only one mode at linear order

There is a scalar and a vector mode for each / > 2, |m| </, n>0
— denote them by (/,m,n,ws)s , (I,m,n,w,)y
where ws =/+1+2nand w, =1+2+2n

For some single linear modes there is no corresponding nonlinear
AdS geon solution (Dias, Horowitz, Santos)

— consistency conditions cannot be solved at €3 order

— examples: (2,0,1,5)s, (4,0,0,5)s , (3,2,0,4)s , (2,2,0,4)y

Resolution: take the linear combination of same frequency modes
at linear order in ¢ (Rostworowski)

(2,0,1,5)s with amplitude « a B
(4,0,0,5)s with amplitude § | 012909 or —152.52
— two one-parameter families with frequency w =5

(m = 0 corresponds to axial symmetry)
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There are non-rotating non-axially-symmetric geons
Example: (I, m, n,ws)s = (2,2,0,3)s

— angular dependence of the linearized solution is cos(2¢)
— there is a corresponding nonlinear solution

— it has zero angular momentum

Taking identical-amplitude linear combination of (2,2,0,3)s and
(2,—2,0,3)s with a shift in time phase, we get a rotating
linearized solution, which corresponds to a rotating nonlinear geon
with a helical Killing vector
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After solving the consistency conditions at €3 order, two-parameter
families of solutions may remain. They split into two
one-parameter families because of the conditions at £ order

Example: the one-parameter family of non-rotating geons
generated by (/,m, n,ws)s = (2,2,0,3)s, and the axially
symmetric one-parameter family generated by (2,0,0, 3)s, appear
to be a single two-parameter family at 3 order

— it is important to go as high as £° order in the expansion

It is necessary to use algebraic manipulation programs
(Maple, Mathematica)
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Same-frequency linear modes should be treated together
Lowest frequency is w = 3, belonging to / = 2, n = 0 scalar modes

We have constructed all AdS geon solutions that in the
small-amplitude limit reduce to w = 3 modes only

There are five such modes, belonging to m= -2, —-1,0,1,2,
each of them can have cos(3t) or sin(3t) time dependence
— there are 10 independent amplitude constants

Solutions are considered equivalent if they can be transformed into
each other by time shift and spatial rotation

Result of detailed analysis up to £° order :
There are 5 nonequivalent one-parameter families that reduce to
w = 3 frequency modes only
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(2,0,0,3)s x cos(3t)

(2,2,0,3)s x cos(3t)

(2,2,0,3)s x cos(3t)
+(2,0,0,3)s x sin(3t)

(2,1,0,3)s x cos(3t)
+(2,-1,0,3)s xsin(3t)

(2,2,0,3)s x cos(3t)
+(2,-2,0,3)s xsin(3t)

cgecceo
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Numerical method

KADATH library — multi-domain spectral method
— developed by Philippe Grandclément at Paris Observatory

Maximal slicing (K = 0) and harmonic coordinates in space
— De-Turck method

Start from a linearized solution — increase the amplitude in steps
— typical resolution: radial 37, angular 9 x 9

— typical running time: several days on hundreds of processors
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Frequency — angular momentum relation for
(I, m,n,ws)s = (2,%2,0,3)s helically rotating geons
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Helically symmetric rotating geons from the PhD Thesis of
Gregoire Martinon 2017
isocontours of gyr — (I, m, n,w)

Three one-parameter families from the linear combination of
(2,£2,1,5)s, (4,£2,0,5)s, (3,£2,0,5)y
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Outlook — things to do

Investigate non-rotating AdS geons

e with or without axial symmetry
e analytically and numerically

Improve numerical method to reach maximal mass geons

Study the stability of geons
e 3+ 1 dimensional time-evolution code

@ Construction of asymptotically flat geons ...
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