Localized nonlinear gravitational waves - "geons" in asymptotically anti de Sitter space-times

in collaboration with

Gyula Fodor (Wigner Research Centre for Physics, Budapest)
Philippe Grandclément and Grégoire Martinon (Observatoire de Paris, Meudon)

Pisa, 17 July 2019

"Particle"-like - localized - solutions

- finite energy, spatially localized, size $(\sim L)$ for times $T\gg L/c$
- nonlinearity is essential
- may be the size of particles, stars or galaxies

In many cases there are no time-independent configurations

- but there are solutions oscillating in time
 - Real scalar fields in Minkowski space-time:
 - oscillons (pulsons) exist in dims. D = 1, 2, 3, 4
 - Real scalar coupled to Einstein gravity: oscillaton
 - Complex scalar with static metric: boson star
 - Gravitational or electromagnetic waves: geon

Spherically symmetric real scalar field, with self-interaction potential $U(\phi)$, in case of d spatial dimensions

$$-\frac{\partial^2 \phi}{\partial t^2} + \frac{\partial^2 \phi}{\partial r^2} + \frac{d-1}{r} \frac{\partial \phi}{\partial r} = U'(\phi)$$

Exactly time-periodic, localized, finite energy solution only exist for d=1 and $U(\phi)=1-\cos\phi$

sine-Gordon breather

There are "almost-breather" solutions, weakly emitting energy by scalar field radiation, having a slowly changing frequency

Discovery of pulsons

Potential: sine-Gordon or $U(\phi) = \frac{1}{4}(\phi^2 - 1)^2$ – spherically symmetry

Numerical solutions in d = 3 spatial dimensions

Bogolyubskii and Makhan'kov, JETP Letters, 25, 107 (1977)

Evolution of the scalar field at the center:

Sudden decay after a few thousands oscillations

– no such decay for d=1 and d=2

Pulsons were renamed oscillons by Marcelo Gleiser in 1995

Seidel and Suen (1991): numerical observation of spherically symmetric, localized, oscillating solutions for a self-gravitating, real scalar field coupled to gravity — oscillaton

- no sudden decay observed numerically for oscillatons
- slow radiation of energy → slowly changing frequency
- lifetime is "infinite"

general structure of oscillons/pulsons and oscillatons

the tail is a very small amplitude outgoing wave

If the central amplitude is ε , then the tail amplitude is proportional to $\exp\left(-\frac{1}{\varepsilon}\right) \longrightarrow \text{radiation rate decreases in time}$

Péter Forgács: Geons

1+D dimensional anti-de Sitter space-time

 AdS_{1+D} is the maximally symmetric Lorentzian manifold (O(2,D)) with constant negative scalar curvature. Its line element in Schwarzschild area coordinates:

$$ds^2 = -(1+k^2r^2)dt^2 + \frac{dr^2}{1+k^2r^2} + r^2d\Omega_{D-1}^2.$$

This metric satisfies Einstein's equations with negative cosmological constant $G_{\mu\nu} + \Lambda g_{\mu\nu} = 0$, where $\Lambda = -\frac{1}{2}D(D-1)k^2$. An observer at a fixed r undergoes constant outwards acceleration:

$$a = \frac{k^2 r}{\sqrt{1 + k^2 r^2}} \quad \xrightarrow{r \to \infty} \quad k$$

AdS background corresponds to an effective attractive force

Péter Forgács: Geons

D = 3 AdS spacetime in compactified coordinates

Global spatially compactified coordinates

$$ds^{2} = \frac{L^{2}}{\cos^{2} x} \left(-dt^{2} + dx^{2} + \sin^{2} x d\Omega^{2} \right)$$

where
$$L^2 = -3/\Lambda$$

- each point corresponds to a 2-sphere with radius L tan x
- metric is static in these coordinates
- center is at x=0, infinity at $x=\frac{\pi}{2}$
- range of time coordinate: $-\infty < t < \infty$
- radial outwards acceleration of constant x observers is $\frac{\sin x}{L}$
- timelike geodesics meet again at a point

Instability of anti-de Sitter spacetime

A light ray can travel to infinity and back in a finite time

This is related to the (conjectured) instability of AdS

- a wave packet can bounce back many times to the center, it becomes more and more concentrated, and in the end it collapses to a black hole
- smaller amplitude \longrightarrow more bounces needed
- demonstrated numerically by Bizoń and Rostworowski in 2011 for a spherically symmetric massless scalar field coupled to gravity

The assumption of reflective boundary conditions is essential

- energy cannot disperse at infinity
- $-\Lambda < 0$ is like a bounding box

Péter Forgács: Geons

Klein-Gordon breather on AdS background

Consider 1st (minimally coupled) KG equation on AdS bckg:

$$\nabla^{\mu}\nabla_{\mu}\phi=m^2\phi,\quad m^2\geq 0$$

and assume spherical symmetry:

$$-\frac{\partial^2 \phi}{\partial \tau^2} + \frac{\partial^2 \phi}{\partial x^2} + 2\frac{D-1}{\sin(2x)}\frac{\partial \phi}{\partial x} = \frac{m^2}{k^2 \cos^2 x}\phi$$

This eq. admits breathers: $\phi = p(x)\cos(\omega\tau/k)$ with p(x) regular $\phi(t,x)$ localized in space and time-periodic! in asymptotically flat (or deSitter) D>1 space-times \nexists breathers! exceptions \rightarrow "V"-shaped potentials, signum-Gordon (H. Arodź et al.)

for $\phi = p(x)\cos(\omega \tau/k)$ the AdS KG eq. becomes:

$$\frac{d^{2}p}{dx^{2}} + 2\frac{D-1}{\sin(2x)}\frac{dp}{dx} = \frac{m^{2}}{k^{2}\cos^{2}x}p - \frac{\omega^{2}}{k^{2}}p$$

generic solution for p(x) is singular either at x=0 or $x=\pi/2$ If the frequency takes on special values:

$$\omega = \omega_+ = (\lambda_+ + 2n)k$$
 $\lambda_{\pm} = \frac{1}{2} \left(D \pm \sqrt{D^2 + 4\frac{m^2}{k^2}} \right)$

for $n \ge 0$ integer, then p(x) is globally regular and the breathers:

$$\phi_n^+ = \cos\left(\frac{\omega_+}{k}\tau\right)(\cos x)^{\lambda_+} P_n^{(D/2-1,\lambda_+-D/2)}(\cos(2x))$$

 $P_n \rightarrow \text{Jacobi polynomial}$

Simplest explicit solutions:

$$\phi_0^{\pm} = \cos\left(\frac{\omega_{\pm}}{k}\tau\right)(\cos x)^{\lambda_{\pm}}$$

$$\phi_1^{\pm} = \cos\left(\frac{\omega_{\pm}}{k}\tau\right)(\cos x)^{\lambda_{\pm}} \left[\frac{D}{2} - (\lambda_{\pm} + 1)\sin^2 x\right]$$

Periodic solutions for m=0 in 3+1 spacetime dimensions at time t=0

Solutions for m > 0 are similar, but more compact

Numerical simulations \longrightarrow all these solutions are stable

Péter Forgács: Geons

Scalar breathers in asymptotically AdS spacetime

Einstein's equations coupled to a massless real scalar field:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} \quad , \quad T_{\mu\nu} = \phi_{,\mu}\phi_{,\nu} - \frac{1}{2}g_{\mu\nu}\phi_{,\alpha}\phi^{,\alpha}$$

together with the wave equation

$$\nabla^{\mu}\nabla_{\mu}\phi=0$$

look for spherically symmetric solutions:

$$\mathrm{d}s^2 = \frac{L^2}{\cos^2 x} \left(-Ae^{-2\delta} \mathrm{d}t^2 + \frac{1}{A} \mathrm{d}x^2 + \sin^2 x \, \mathrm{d}\Omega_{D-1}^2 \right)$$

where
$$A = A(t,x)$$
 and $\delta = \delta(t,x)$; $L^2 = -D(D-1)/2/\Lambda$

– anti-de Sitter space-time corresponds to A=1 and $\delta=0$

Small-amplitude expansion

The scalar field and the metric functions are expanded in powers of a small parameter $\boldsymbol{\varepsilon}$

$$\phi = \sum_{n=0}^{\infty} \phi^{(2n+1)} \varepsilon^{2n+1} , \quad A = 1 + \sum_{n=1}^{\infty} A^{(2n)} \varepsilon^{2n} , \quad \delta = \sum_{n=1}^{\infty} \delta^{(2n)} \varepsilon^{2n}$$

To first order in ε : the metric is AdS, $\phi^{(1)}(x,t)$ is given as:

$$\phi^{(1)}(x,t) = p_m(x)\cos(\omega_m t)$$
 , $m \ge 0$ integer

 $p_m(x)$ can be given with Jacobi polynomials, and the allowed frequencies are

$$\omega_m = d + 2m$$

in leading order $\rightarrow \phi(x,t) = \phi^{(1)}(x,t)$ is spatially localized, time-periodic.

in higher orders in the arepsilon expansion

$$\omega = \omega^{(0)} (1 + \sum_{j=1}^{\infty} \omega^{(j)} \varepsilon^{j}), \quad \omega^{(0)} = \omega_n$$
 (1)

There is a one-parameter family of solutions emerging from each p_n linearized mode

The mass of the "breathers" in the perturbative small amplitude expansion

$$m = \frac{\pi}{32}\varepsilon^2 + m_4(D)\varepsilon^4 + \dots, \ m_4(D=3) \approx -1.05316.$$
 (2)

arepsilon determines the value of the amplitude of the field at the center at t=0

Péter Forgács: Geons

numerical vs. perturbative results

comparing the numerical results to the perturbative (small- ε) expansion:

AdS breather becomes unstable when the total mass starts to decrease with increasing central density

15/32

Perturbative expansion is in excellent agreement with the numerical results up to $\varepsilon \approx 1$.

AdS gravitational breathers – geons

Localized time-periodic vacuum solutions with regular center and no horizon for $\Lambda < 0\,$

– typical size given by the length-scale $L=\sqrt{-\frac{3}{\Lambda}}$

There are no spherically symmetric vacuum geon solutions

Small-amplitude expansion: consider a one-parameter family of solutions depending on a parameter ε , and expand the metric as

$$g_{\mu\nu} = \sum_{k=0}^{\infty} \varepsilon^k g_{\mu\nu}^{(k)}$$

 $g_{\mu\nu}^{(0)}$ is the AdS metric

$$ds_{(0)}^2 = \frac{L^2}{\cos^2 x} \left[-dt^2 + dx^2 + \sin^2 x (d\theta^2 + \sin^2 \theta d\phi^2) \right]$$

 $g^{(0)}_{\mu
u}$ has components that diverge as $\left(rac{\pi}{2} - x
ight)^{-2}$ at infinity

We require that for $k \ge 1$ all $g_{\mu\nu}^{(k)}$ diverge at most as $\left(\frac{\pi}{2} - x\right)^{-1}$ $\longrightarrow g_{\mu\nu}$ is asymptotically AdS

We use real spherical harmonics \mathbb{S}_{lm}

- defined for $l \ge 0$ and $-l \le m \le l$ integers
- ϕ dependence is $\cos(m\phi)$ for $m \ge 0$, and $\sin(|m|\phi)$ for m < 0

Spherical harmonic decomposition

Tensors can be decomposed into

- scalar-type part (polar, even parity)
- vector-type part (axial, odd parity)
- tensor-type part only for $d \ge 4$ space dimensions

Vector spherical harmonics $\mathbb{V}_{(lm)i}$ for d=3 has the components

$$\mathbb{V}_{(\mathit{Im})\theta} = \frac{1}{\sqrt{\mathit{I}(\mathit{I}+1)}} \frac{1}{\sin\theta} \frac{\partial \mathbb{S}_{\mathit{Im}}}{\partial \phi} \ , \quad \mathbb{V}_{(\mathit{Im})\phi} = \frac{-1}{\sqrt{\mathit{I}(\mathit{I}+1)}} \sin\theta \frac{\partial \mathbb{S}_{\mathit{Im}}}{\partial \theta}$$

Perturbations for each I, m can be considered separately

– they are only coupled by lower order terms in the ε expansion

For each choice of l and m, and at each k order in the ε expansion

- scalar-type perturbations are described by the function $\Phi_{lm}^{(k,s)}$
- vector-type perturbations are described by the function $\Phi_{lm}^{(k,\nu)}$

All these scalars satisfy the equations (dropping the indices)

$$-\frac{\partial^2 \Phi}{\partial t^2} + \frac{\partial^2 \Phi}{\partial x^2} - \frac{I(I+1)}{\sin^2 x} \Phi = \frac{\bar{\Phi}}{\sin^2 x}$$

where $\bar{\Phi}$ are known functions of t, x, already determined at lower than k order in ε

Boundary conditions: metric perturbation be asymptotically AdS:

- \bullet for vector-type perturbations $\lim_{x \to \frac{\pi}{2}} \Phi = 0$
- for scalar-type perturbations $\lim_{x \to \frac{\pi}{2}} \frac{\mathrm{d}\Phi}{\mathrm{d}x} = 0$

Perturbations of the metric can be calculated from these functions by taking derivatives and algebraic manipulations

Péter Forgács: Geons

Periodic solutions at linear order

At order ε^1 there is no inhomogeneous source term: $\bar{\Phi}=0$ Search solutions in the form $\Phi=p(x)\cos(\omega t)$

Centrally regular and asymptotically AdS solutions only exist:

– scalar-type perturbations: $\omega = \mathit{I} + 1 + 2\mathit{n}$, $\mathit{n} \geq 0$ integer

$$p(x) = \sin^{l+1} x \frac{n!}{(l+\frac{3}{2})_n} P_n^{(l+\frac{1}{2},-\frac{1}{2})} (\cos(2x))$$

– vector-type perturbations: $\omega = I + 2 + 2n$, $n \geq 0$ integer

$$p(x) = \sin^{l+1} x \cos x \frac{n!}{(l+\frac{3}{2})_n} P_n^{(l+\frac{1}{2},\frac{1}{2})} (\cos(2x))$$

where the Pochhammer's Symbol is $(c)_n = \Gamma(c+n)/\Gamma(c)$ and $P_n^{\alpha,\beta}(z)$ are Jacobi polynomials

n gives the number of radial nodes (zero crossings)

For each (l, m, n), where $l \ge 2$, $|m| \le l$, $n \ge 0$ integers, there is a scalar- and a vector-type linear geon mode with arbitrary amplitude

The frequency for scalar-type:
$$\omega = l + 1 + 2n$$
 for vector-type: $\omega = l + 2 + 2n$

Since all frequencies are integers, an arbitrary linear combination of these modes is still a time-periodic solution with $\omega=1$

--- infinite-parameter family of linear geons

The nonlinear system only has one-parameter families of AdS geon solutions

- true for all cases studied by the nonlinear expansion formalism
 started with finite number of parameters
- supported by direct numerical search for time-periodic solutions of the Einstein's equations
- proof ???

Inhomogeneous scalar equation at higher orders in ε

$$-\frac{\partial^2 \Phi}{\partial t^2} + \frac{\partial^2 \Phi}{\partial x^2} - \frac{I(I+1)}{\sin^2 x} \Phi = \frac{\bar{\Phi}}{\sin^2 x}$$

homogeneous solutions with frequency ω scalar-type: $\omega = l + 1 + 2n$ $\bar{\Phi} = p_0(x)\sin(\omega_s t)$ or vector-type: $\omega = I + 2 + 2n$

sum of source terms of the type $\bar{\Phi} = p_0(x)\cos(\omega_s t)$

If $\omega \neq \omega_s$ for all n > 0 integers, there are always time-periodic solutions which are asymptotically AdS and have a regular center

If $\omega = \omega_s$ for some n, then $\bar{\Phi}$ is a resonant source term

- generally, regular asymptotically AdS solutions for Φ are blow-up solutions of the type $t\cos(\omega t)$
- time-periodic solution for a resonant source term only exists if a consistency condition holds

Consistency conditions

Time-periodic centrally regular asymptotically AdS geon solution can only exist, if for each resonant source term, having the form $\bar{\Phi} = p_0(x)\sin(\omega_s t)$, a consistency condition holds

$$\int_0^{\frac{\pi}{2}} \frac{p_{l,n}(x)p_0(x)}{\sin^2 x} \mathrm{d}x = 0$$

where $p_{l,n}(x)$ is the regular solution of the homogeneous equation

The consistency conditions determine

- the change of physical frequency $\bar{\omega}$ as a function of ε
- ratio of the modes included at linear order

If the consistency conditions cannot be satisfied

- \implies terms with linearly increasing amplitude $t\cos(\omega t)$
- ---- shift of energy to higher frequency modes
- --→ turbulent instability \rightsquigarrow black hole formation

Natural simplest case: start with only one mode at linear order

There is a scalar and a vector mode for each $l \ge 2$, $|m| \le l$, $n \ge 0$

– denote them by $(I,m,n,\omega_s)_S$, $(I,m,n,\omega_v)_V$ where $\omega_s=I+1+2n$ and $\omega_v=I+2+2n$

For some single linear modes there is no corresponding nonlinear AdS geon solution (Dias, Horowitz, Santos)

- consistency conditions cannot be solved at ε^3 order
- examples: $(2,0,1,5)_{\mathcal{S}}$, $(4,0,0,5)_{\mathcal{S}}$, $(3,2,0,4)_{\mathcal{S}}$, $(2,2,0,4)_{\mathcal{V}}$

Resolution: take the linear combination of same frequency modes at linear order in ε (Rostworowski)

$$\begin{array}{c} (2,0,1,5)_{\mathcal{S}} \text{ with amplitude } \alpha \\ (4,0,0,5)_{\mathcal{S}} \text{ with amplitude } \beta \end{array} \right\} \longrightarrow \frac{\alpha}{\beta} \approx 0.12909 \text{ or } -152.52$$

 \longrightarrow two one-parameter families with frequency $\omega = 5$ (m = 0 corresponds to axial symmetry)

There are non-rotating non-axially-symmetric geons

Example: $(I, m, n, \omega_s)_S = (2, 2, 0, 3)_S$

- angular dependence of the linearized solution is $cos(2\phi)$
- there is a corresponding nonlinear solution
- it has zero angular momentum

Taking identical-amplitude linear combination of $(2,2,0,3)_S$ and $(2,-2,0,3)_S$ with a shift in time phase, we get a rotating linearized solution, which corresponds to a rotating nonlinear geon with a helical Killing vector

Péter Forgács: Geons

After solving the consistency conditions at ε^3 order, two-parameter families of solutions may remain. They split into two one-parameter families because of the conditions at ε^5 order

Example: the one-parameter family of non-rotating geons generated by $(I, m, n, \omega_s)_S = (2, 2, 0, 3)_S$, and the axially symmetric one-parameter family generated by $(2, 0, 0, 3)_S$, appear to be a single two-parameter family at ε^3 order

 \longrightarrow it is important to go as high as $arepsilon^5$ order in the expansion

It is necessary to use algebraic manipulation programs (Maple, Mathematica)

Péter Forgács: Geons

Same-frequency linear modes should be treated together Lowest frequency is $\omega = 3$, belonging to I = 2, n = 0 scalar modes We have constructed all AdS geon solutions that in the

We have constructed all AdS geon solutions that in the small-amplitude limit reduce to $\omega=3$ modes only

There are five such modes, belonging to m=-2,-1,0,1,2, each of them can have $\cos(3t)$ or $\sin(3t)$ time dependence \longrightarrow there are 10 independent amplitude constants

Solutions are considered equivalent if they can be transformed into each other by time shift and spatial rotation

Result of detailed analysis up to ε^{5} order :

There are 5 nonequivalent one-parameter families that reduce to $\omega=$ 3 frequency modes only

Péter Forgács: Geons

$$t = 0 t = \frac{\pi}{12} t = \frac{\pi}{6} t = \frac{\pi}{4} t = \frac{\pi}{3}$$

$$(2,0,0,3)_{S} \times \cos(3t)$$

$$(2,2,0,3)_{S} \times \cos(3t)$$

$$(2,2,0,3)_{S} \times \cos(3t)$$

$$+(2,0,0,3)_{S} \times \sin(3t)$$

$$(2,1,0,3)_{S} \times \cos(3t)$$

$$+(2,-1,0,3)_{S} \times \sin(3t)$$

$$(2,2,0,3)_{S} \times \cos(3t)$$

$$+(2,-1,0,3)_{S} \times \sin(3t)$$

$$(2,2,0,3)_{S} \times \cos(3t)$$

$$+(2,-2,0,3)_{S} \times \sin(3t)$$

Péter Forgács: Geons

Numerical method

KADATH library - multi-domain spectral method

- developed by Philippe Grandclément at Paris Observatory

Maximal slicing (K = 0) and harmonic coordinates in space

De-Turck method

Start from a linearized solution – increase the amplitude in steps

- typical resolution: radial 37, angular 9×9
- typical running time: several days on hundreds of processors

Frequency – angular momentum relation for $(I, m, n, \omega_s)_S = (2, \pm 2, 0, 3)_S$ helically rotating geons

Helically symmetric rotating geons from the PhD Thesis of Gregoire Martinon 2017

isocontours of g_{tt} – (I, m, n, ω)

 $(2,\pm 2,0,3)_S$

 $(4, \pm 4, 0, 5)_S$

Three one-parameter families from the linear combination of $(2,\pm 2,1,5)_S$, $(4,\pm 2,0,5)_S$, $(3,\pm 2,0,5)_V$

Péter Forgács: Geons

Outlook – things to do

- Investigate non-rotating AdS geons
 - with or without axial symmetry
 - analytically and numerically
- Improve numerical method to reach maximal mass geons
- Study the stability of geons
 - 3 + 1 dimensional time-evolution code
- Construction of asymptotically flat geons ...