
Complexity for Warped AdS black holes

Stefano Baiguera
University of Milan-Bicocca

Based on [R. Auzzi, S.B., G. Nardelli, arXiv: 1804.07521],
[R. Auzzi, S.B., M. Grassi, G. Nardelli, N. Zenoni, arXiv: 1806.06216],
[R. Auzzi, S.B., A. Mitra, G. Nardelli, N. Zenoni, arXiv: 1906.09345]

19th July 2019

Stefano Baiguera Complexity for Warped AdS black holes 19th July 2019 1 / 23



Outline

1 Complexity=Volume or Action conjectures

2 Black holes in Warped AdS3

3 Computation of the volume

4 Computation of the action

5 Conclusions and perspectives

Stefano Baiguera Complexity for Warped AdS black holes 19th July 2019 2 / 23



Complexity=Volume or Action conjectures

ER=EPR

Consider the Kruskal extension of the AdS black
hole.
The dual interpretation is the existence of a
thermofield double state

|ΨTFD〉 =
1√
Z

∑
n

e−Enβ/2−iEn(tL+tR)|En〉R|En〉L .

Correlators between the two CFTs are non-zero due to entanglement:

〈ΨTFD|OLOR|ΨTFD〉 6= 0 (1)

Boundaries are disconnected; the only way to communicate is through the interior
regions ⇒ the existence of the Einstein-Rosen bridge allows spacelike correlations
(ER=EPR) [Maldacena, Susskind, 2013].
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Complexity=Volume or Action conjectures

Evolution of Einstein-Rosen bridge

The Einstein-Rosen bridge grows with time far after the black hole reaches
thermal equilibrium.
In order to follow the history of the interior region, we foliate spacetime with
global spacelike slices [Susskind, 2014]:

Geodesically complete causal curves must intersect these slices once
Slices must stay away from curvature singularities
The entire region outside the horizon must be foliated by these slices

Given the set of spacelike slices anchored on a spatial sphere
with infinite radius, we choose the one with maximum
volume.
Varying t, we foliate the spacetime with maximal slices.

What represents in the dual theory the growth of the Einstein-Rosen
bridge?
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Complexity=Volume or Action conjectures

Computational complexity

Consider a space of states and the concepts of simple state and simple operation.
Example: a system composed of K classical bits

Simple state: (00000000 . . . )

Generic state: (0010111001 . . . )

Simple operation: flip a single bit (0↔ 1)

Computational complexity is the least number of simple operations needed
to obtain a generic final state starting from a simple one.
Classical physical quantities:

Maximum entropy S = K log 2

Thermalization time ttherm ∼ Kp

Maximum complexity C = K/2

Time to get maximally complex tcompl ∼ Kp
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Complexity=Volume or Action conjectures

Quantum complexity

Quantum mechanically, we assume the existence of an Hilbert space.
Example: a system of K qubits

Simple state |0〉 = |00000 . . . 〉

Generic state |ψ〉 =
∑2K

i=1 αi|i〉
Simple operation: act on 2 qubits

Complexity is the minimum number of simple unitary operators required to
transform a simple state into a generic one.
Quantum physical quantities:

Maximum entropy S = K log 2

Thermalization time ttherm ∼ Kp

Maximum complexity C = eK

Time to get maximally complex tcompl ∼ eK
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Complexity=Volume or Action conjectures

Complexity=Volume conjecture

Conjecture (Stanford, Susskind, 2014)

The complexity of the boundary state is proportional to the spatial volume V of
the Einstein-Rosen bridge anchored at the boundary:

CV ∼
Max(V )

Gl
(2)

Requirements about complexity from the gravity side:
Complexity is extensive and proportional to the degrees of freedom of the
system [Stanford, Susskind, 2014]:

dC

dt
∼ TS (3)

Extremal black holes are ground states and therefore static ⇒ they have
vanishing complexity rate
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Complexity=Volume or Action conjectures

Complexity=Action conjecture

Conjecture (Brown, Roberts, Susskind, Swingle, Zhao,
2016)

The complexity of the boundary state is proportional to
the classical action I computed in the Wheeler-de Witt
patch associated to a boundary section:

CA =
I

π~
(4)

Aspects of the conjecture:
It is more universal: the normalization is
independent from the background
It passes the same tests of the Complexity=Volume
proposal for late times
For intermediate times, Volume and Action
conjectures give different results
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Black holes in Warped AdS3

Black holes in Warped AdS3

Black holes metric in Warped AdS3 [Anninos, Padi, Song, Strominger, 2008]:

ds2

l2
= dt2 +

dr2

(ν2 + 3)(r − r+)(r − r−)
+
(

2νr −
√
r+r−(ν2 + 3)

)
dtdθ

+
r

4

[
3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν

√
r+r−(ν2 + 3)

]
dθ2 ,

(5)

with r−, r+ inner and outer horizons.
If ν = 1 we recover the BTZ black hole in AdS spacetime. A change of
coordinates recasts the metric in the standard form (in Poincaré patch)

ds2 = −
r̃2 − r̃2

+ − r̃2
−

l2
dt̃2 +

l2r̃2dr̃2

(r̃2 − r̃2
−)(r̃2 − r̃2

+)
− 2

r̃+r̃−
l

dt̃dθ̃ + r̃2dθ̃2

If ν2 < 1 the solution admits closed timelike curves [Banados, Barnich,
Compère, Gomberoff, 2005]
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Black holes in Warped AdS3

Eddington-Finkelstein coordinates

The metric of the Warped black hole is put in Arnowitt-Deser-Misner form

ds2 = −N2dt2 +
l4dr2

4R2N2
+ l2R2(dθ +Nθdt)2 , (6)

with an appropriate choice of {R,N,Nθ}.
We consider a set of null geodesics satisfying (dθ +Nθdt) = 0 to introduce
coordinates à la Eddington-Finkelstein

du = dt− l2

2RN2
dr , dv = dt+

l2

2RN2
dr , (7)

where null geodesics are described by constant values of u, v.
We define the finite coordinate transformation as

u = t− r∗(r) , v = t+ r∗(r) , (8)

where
dr∗

dr
=

l2

2RN2
. (9)
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Black holes in Warped AdS3

Causal structure

Using null coordinates, we build the Kruskal extension of the Warped black hole
and then we find the causal structure of spacetime.
The Penrose diagrams are the same of Schwarzschild (non-rotating case) and
Reissner-Nordstrom (rotating case) black holes in 3+1 dimensions [Jugeau,
Moutsopoulos, Ritter, 2010].

Non-rotating case
Rotating case
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Computation of the volume

Extremal volume

Time translation symmetry in Schwarzschild coordinates corresponds to invariance
under the time evolution in the boundary WCFT with Hamiltonian H = HL −HR

tL → tL + ∆t , tR → tR −∆t . (10)

It is not restrictive to consider for the extremal volume the symmetric
configuration

tL = tR =
tb
2

(11)
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Computation of the volume

Computation of the volume

We follow the strategy of [Carmi, Chapman, Marrochio, Myers, Sugishita, 2017].
The volume functional is taken along the angular direction giving

V = 2× 2π

∫ λmax

λmin

dλL(r, ṙ, v̇) ,

with conserved quantity

E =
1

l2
∂L
∂v̇

. (12)

The volume can be written as

V

4πl2
=

∫ rmax

rmin

dr

[√
4E2 + (ν2 + 3)(r − r−)(r − r+)

2(ν2 + 3)(r − r−)(r − r+)
×

×
√(

2νr −
√
r+r−(ν2 + 3)

)2

− (ν2 + 3)(r − r−)(r − r+)

−E
2νr −

√
r+r−(ν2 + 3)

(ν2 + 3)(r − r−)(r − r+)

]
+ E(v(rmax)− v(rmin)) . (13)
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Computation of the volume

Differentiating with respect to time we get
1

2l

dV

dtR
=
dV

dτ
= 2πlE . (14)
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Figure 1: Time dependence of
dV/dτ in units of πl, for
r0 = 1 and various values of
the warping parameter ν
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Figure 2: Time dependence of
dV/dτ in units of πl, for
r+ = 3, ν = 2 and various
values of the inner radius r−
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Computation of the volume

Late time complexity

In the late time limit, the volume is invariant under translations in t and rotations
in θ ⇒ the maximal slice sits at constant r = r̂ [Susskind, 2014].
Extremizing the volume, the only possible constant-r slice sits at

r̂ =
r+ + r−

2
⇒ lim

τ→∞

dV

dτ
=
πl

2
(r+ − r−)

√
3 + ν2 . (15)

Consistency checks:
It vanishes in the extremal case
It is proportional to the product

TS =
(r+ − r−)(3 + ν2)

16G
. (16)

It satisfies a bound involving the conserved charges of the black hole [Cai,
Ruan, Wang, Yang, Peng, 2016]

dV

dτ
≤ [(M − ΩJ)+ − (M − ΩJ)−] = TS . (17)
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Computation of the volume

Holographic dictionary for complexity

In AdSD case the standard dictionary is

lim
τ→∞

dV

dτ
=

8πGl

D − 1
TS , C = (D − 1)

V

Gl
. (18)

In the warped AdS3 case we obtain

lim
τ→∞

dV

dτ
= 4πGl η TS , η =

2√
3 + ν2

. (19)

Possible interpretations:
Complexity approaches at late times ηTS with η ≤ 1⇒ warping would make
the complexity rate decrease
The holographic dictionary is

C =
2

Glη
V , (20)

and the rate always saturates at TS
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Computation of the action

Wheeler-de Witt patch

We put a cutoff surface at r = Λ, where we fix the boundary slices.
The Wheeler-de Witt patch changes after a critical time tC in the non-rotating
case, while it is the same at all times in the rotating case.

Non-rotating case Rotating case
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Computation of the action

Computation of the action

The action on the Wheeler-de Witt patch is decomposed as

I = IV + IB + IJ + Ict (21)
IV is the bulk contribution
IB is the contribution from boundaries
IJ is the contribution from joints
Ict is a counterterm

Bulk action [Banados, Barnich, Compère, Gomberoff, 2005]:

IV =
1

16πG

∫
WdW

d3x

{
√
g

[(
R+

2

L2

)
− κ

4
FµνFµν

]
− α

2
εµνρAµFνρ

}
, (22)

which admits regular black hole solutions without closed timelike curves if κ = −1.

Gibbons-Hawking-York term for timelike (ε = 1) and spacelike boundaries
(ε = −1) [York, 1972; Gibbons, Hawking, 1977]:

IGHY =
ε

8πG

∫
B
d2x
√
hK , (23)

where hij is the indiced metric and K is the extrinsic curvature.
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Computation of the action

Surface term for null boundaries [Lehner, Myers, Poisson, Sorkin, 2016]:

IN =
1

8πG

∫
B
dλdS κ̃ , (24)

where λ parametrizes the null direction of the surface and κ̃ measures the failure
of λ to be an affine parameter.
Joint terms [Hayward, 1993; Lehner, Myers, Poisson, Sorkin, 2016]:

IJ =
1

8πG

∫
Σ

dθ
√
σ a , (25)

where σab is the induced metric and a depends from the joint.
Counterterm [Lehner, Myers, Poisson, Sorkin, 2016]:

Ict =
1

8πG

∫
dθ dλ

√
σΘ log |L̃Θ| , (26)

where L̃ is a length scale and Θ is the expansion of the geodesics.
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Computation of the action

The late time behaviour is given by

1

2l

dI

dtR
=
dI

dτ
=
ν2 + 3

16G
(r+ − r−) = TS . (27)

Complexity approaches TS without additional factors of (ν, l).

Figure 3: Time dependence of
dI/dτ for r0 = 1 and various
values of the warping
parameter ν. The critical time
corresponds to τ = 0.
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Figure 4: Time dependence of
the WDW action in the
non-rotating case for different
values of the parameter A. We
set G = 1, l = 1, r0 = 1 and
ν = 2.
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Time dependence of the WDW action in the non-rotating case for different values of the
parameter A. We set G = 1, l = 1, r0 = 1 and ν = 2.
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Computation of the action

Subregion complexity

Notion of subsystem complexity for a mixed state on the boundary[Carmi, Myers,
Rath, 2016]:

Conjecture (Subregion Complexity=Volume)

The complexity of a subregion is dual to the volume of the extremal
codimension-1 slice anchored to the boundary and its Ryu-Takayanagi surface.

Conjecture (Subregion Complexity=Action)

The complexity of a subregion is dual to the gravitational action computed on the
intersection of the WDW patch and the entanglement wedge associated to the
region.

We can distinguish between the two conjectures by studying
The structure of UV divergences
The subadditivity or superadditivity properties
The temperature dependence
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Conclusions and perspectives

Conclusions and perspectives

Conclusions
Complexity is a monotonically increasing function of time
Volume: The rate of growth is a monotonically increasing function of time
and saturates to a constant value at late times
Action: The rate of growth increases up to a maximum, then decreases until
it reaches a constant value for late times
Complexity rate is proportional to TS at late times

Perspectives
Study of complexity in the boundary WCFT [Caputa, Kundu, Miyaji,
Takayanagi, Watanabe, 2017]

Study of the complexity for general subregions [Carmi, Myers, Rath,
2017],[Erdmenger et al., 2018],[Swingle et al, 2018],[Alishahiha et al., 2018]
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Conclusions and perspectives

Thank you for the attention!
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