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OUTLINE

After a brief review of θ-dependence in Yang-Mills theories (analytic predictions vs

lattice results), I will discuss 2 main topics:

• θ-dependence andZN realization: an analysis in trace deformed Yang-Mills theories

• precision tests of the large-N limit: the case ofCPN−1 models in two dimensions



QCD presents various non-perturbative features: confinement, χSB, ...

An important role is played by the presence of gauge configurations with non-trivial

topology, labelled by an integer winding number Q =
∫

d4x q(x)

q(x) =
g2

64π2
Ga

µν(x)G̃
a
µν(x) =

g2

64π2
ǫµνρσG

a
µν(x)G

a
ρσ(x)

GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

Homotopy group: π3(SU(Nc)) = Z

GG̃ is renormalizable and a possibile coupling to it is a free parameter of QCD

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

the theory at θ 6= 0 is well defined, but presents explicit breaking of CP symmetry.

|θ| < 10−10 (strong CP-problem), however θ-dependence is related to essential

theoretical and phenomenological aspects anyway.



QCD at non-zero θ

The free energy density f(θ) = −T logZ/V is a periodic even function of θ

It is connected to the probability distribution P (Q) at θ = 0 via Taylor expansion:

f(θ)− f(0) =
1

2
f (2)θ2 +

1

4!
f (4)θ4 + ... ; f (2n) =

d2nf

dθ2n

∣

∣

∣

∣

θ=0

= −(−1)n
〈Q2n〉c
V

A common parametrization is the following

f(θ, T )− f(0, T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
]

χ =
1

V
〈Q2〉0 = f (2) b2 = −

〈Q4〉 − 3〈Q2〉2

12〈Q2〉

∣

∣

∣

∣

θ=0

b4 =
〈Q6〉 − 15〈Q4〉〈Q2〉+ 30〈Q2〉3

360〈Q2〉

∣

∣

∣

∣

θ=0

P (Q) is non-perturbative: a lattice investigation is the ideal first-principle approach

however various analytic predictions exist, working well in different regimes



Predictions about θ-dependence - I

Dilute Instanton Gas Approximation (DIGA) for high T (Gross, Pisarski, Yaffe 1981)

IDEA: semi-classical integration around classical solutions with Q 6= 0: instantons

1-loop one-instanton contribution (ρ is the instanton radius):

exp

(

−
8π2

g2(ρ)

)

topological fluctuations exponentially suppressed =⇒ dilute instanton gas approximation

• by asymptotic freedom, works well only for small instantons

• breaks down for large instantons (1/ρ . ΛQCD)

Finite-T acts as an IR cut-off to ρ, making the 1-loop result more and more reliable



• instantons - antiinstantons treated as uncorrelated (non-interacting) objects

Poisson distribution with an average probability density p per unit volume

Zθ ≃
∑ 1

n+!n−
!
(V4p)

n++n−eiθ(n+−n−) = exp [2V4p cos θ]

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

• The prefactor χ(T ) can also be computed in the 1-loop approximation:

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf

Notice: the (1 − cos θ) prediction is just related to diluteness and might be good

before reaching the asymptotic perturbative behavior



Predictions about θ-dependence - II

Chiral Perturbation Theory (χPT) for low T

In the presence of quarks, θ can be moved to light quark masses (if any!) by U(1)

axial rotations. Then, at low T , χPT can be applied as usual.

Result for the ground state energy (Di Vecchia, Veneziano 1980)

E0(θ) = −m2
πf

2
π

√

1−
4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2
πf

2
π , b2 = −

1

12

1 + z3

(1 + z)3
, z =

mu

md

Not relevant to pure gauge theories



Predictions about θ-dependence - III

Large-Nc for low T SU(Nc) gauge theories (Witten, 1980)

g2Nc = λ fixed as Nc → ∞ =⇒ Effective instanton weight e−8π2Nc/g2 → 0

Non-trivial θ-dependence persists only if the dependence is on θ̄ = θ/Nc.

f(θ, T )− f(0, T ) = N2
c f̄(θ̄, T )

f̄(θ̄, T ) =
1

2
χ̄θ̄2

[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is purely Gaussian in the large Nc limit.

θ)

0 π 2π θ3π−π

F(



θ-dependence from Lattice QCD simulations

(n’)U (n)µ
n n+µ ψ

Gauge fields are 3 × 3 unitary complex

matrixes living on lattice links (link

variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields live on lattice sites

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

1
T T =

1

τ
=

1

Nta(β,m)

τ is the extension of the compactified time



Numerical Problems in Lattice QCD simulations

main technical issues that one has to face

• topological charge renormalizes, naive lattice discretizations are non-integer valued.

Various methods devised leading to consistent results

– field theoretic compute renormalization constants and subtract

– fermionic definitions use the index theorem to deduce Q from fermionic zero modes

– smoothing methods use various techniques to smooth gauge fields and recover integer Q

• Sign problem at θ 6= 0

Taylor expansion from cumulants at θ = 0

or perform simulations at imaginary values of θ

• Freezing of topological modes in the continuum (known algorithms become non-ergodic)



Pure gauge results: T = 0 (Yang-Mills vacuum)

Topological susceptibility well known, with increasing refinement, since many years,

and compatible with the Witten-Veneziano mechanism for mη′ , χ
1/4 ∼ 180 MeV
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Determination of b2 more difficult. Most recent

determination for SU(3) (Bonati, MD, Scapellato,

1512.01544) obtained by introducing an external

imaginary θ source to improve signal/noise.
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scaling of b2:

b2 ≃
b̄2
N2

with b̄2 = −0.20(2)

(Bonati, MD, Rossi, Vicari, 1607.06360)



Pure gauge results: Finite T , across and above Tc
χ drops suddenly after Tc, known since many years (B. Alles, MD, A. Di Giacomo, hep-lat/9605013)
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DIGA values for higher cumulants reached quite

soon, already for T & 1.1 Tc.

Emerging picture:

• shortly after deconfinement (breaking of center symmetry), topological excitations

behave as a dilute non-interacting gas, DIGA: f(θ) ∝ (1− cos(θ)).

• Below TC , agreement with large-N predictions, f = f(θ/N).

NOT a collection of dilute instanton-quarks with fractional charge 1/N :

f ∝ (1−cos(θ/N)) =⇒ b2 = −0.08333/N2 instead we find b2 = −0.20(2)/N2



First topic of this talk

A closer look at the relation between center symmetry and θ-dependence

Is it possible to preserve ZN center symmetry, even with a small compactification

radius (high-T , small coupling), by deforming the pure Yang-Mills action?

M. Unsal and L. Yaffe: PRD 78, (2008) 065035

J.C. Myers and C. Ogilvie: PRD 77, (2008) 125030 (first lattice study)

Sdef = SYM + h
∑

~n

|TrP (~n)|2

SU(3): just one deformation, suppresses large values of |TrP (~n)| locally =⇒

for large enough h, center symmetry is restored even at high-T (small coupling)

QUESTION: what happens to θ dependence?

What is DIGA related to? Small coupling or broken center symmetry?

ANSWER =⇒ C. Bonati, M. Cardinali, MD, Phys. Rev. D 98, 054508 (2018), arXiv:1807.06558



Restoration of Z3 takes place in a non-trivial way
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- T ≃ 1.4 Tc, broken Z3 at h = 0

- Center symmetry recovered by increasing h

- Some differences from the standard confined

phase emerge looking at the adjoint Polyakov loop
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P adj = |TrP |2 − 1

a negative value of P adj means that |TrP | tends

to vanish locally (point by point).

For T < Tc it vanishes by long-range disorder
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cos(θ/3) prediction

θ-dependence seems to be sensible just to the restoration of center symmetry

(either locally or by long-range disorder)

– Left: the topological susceptibility goes back to its T = 0 value

– Right: the same happens for b2.

Notice: semiclassical arguments (Unsal, Yaffe, 2008) predict b2 = −1/(12N2
c )

(Fractional Instanton Gas Approximation). This is still not observed at the explored T



Better insight by going to N > 3
C. Bonati, M. Cardinali, MD, F. Mazziotti, in progress

SU(4): center symmetry has two possible breaking patterns

Z4 → Id ; Z4 → Z2

Complete restoration of Z4 requires the vanishing of two traces: P and P 2

two possible trace deformations to be added to the action

Sdef = SYM + h1
∑

~n

|TrP (~n)|2 + h2
∑

~n

|TrP 2(~n)|2

What about θ-dependence?

Is it sensitive to partial or complete restoration?



ANSWER: θ-dependence back to confined values only for complete restoration!
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Second topic of this talk

How well are large-N predictions verified?

Numerical tests of large-N predictions in confined Yang-Mills are semi-quantitative,

because the predictions themselves are semi-quantitative.

An interesting playground is represented by 2d CPN−1 models, where large-N

predictions are also quantitative!

S(θ) =

∫
[

N

g
D̄µz̄(x)Dµz(x)− iθq(x)

]

d2x ; Q =

∫

q(x)d2x =
1

4π
ǫµν

∫

Fµν(x)d
2x

Dµ = ∂µ + iAµ Aµ is an auxiliary U(1) gauge field

z is a normalized complex field with N components



Large-N predictions for 2d CPN−1 models

χ = χ̄N−1 +O(N−2) and b2n = b̄2nN
−2n +O(N−2n−1).

ξ2χ =
1

2πN
+

e2
N2

+O

(

1

N3

)

, e2 = −0.0605 ; ξ = 2nd moment corr. length

b2 = −
27

5

1

N2
+O

(

1

N3

)

, b4 = −
25338

175

1

N4
+O

(

1

N5

)

,

LOχ: Luscher, PLB 78, 465 (1978) D’Adda, Luscher, Di Vecchia, NPB 146, 63 (1978), Witten, NPB 149, 285 (1979)

NLO χ (e2): M. Campostrini and P. Rossi, PLB 272, 305 (1991).

LO b2: L. Del Debbio, G. M. Manca, H. Panagopoulos, A. Skouroupathis, E. Vicari, JHEP 0606, 005 (2006)

LO all b2n: P. Rossi, PRD 94, 045013 (2016) C. Bonati, MD, P. Rossi, E. Vicari, PRD 94, 085017 (2016)

Lattice checks till 2017:

LO χ: OK; NLO χ: disagreement even in sign; LO b2: never tried

M. Campostrini, P. Rossi and E. Vicari, PRD 46, 2647 (1992) E. Vicari, PLB 309, 139 (1993) L. Del Debbio,

G. M. Manca and E. Vicari, PLB 594, 315 (2004) J. Flynn, A. Juttner, A. Lawson and F. Sanfilippo, arXiv:1504.06292

M. Hasenbusch, PRD 96, no. 5, 054504 (2017)

MAIN LIMITATION: critical slowing down of Q for large N



last year update: C. Bonanno, C. Bonati, MD, JHEP 1901, 003 (2019), arXiv:1807.11357
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– Progress thanks to: simulated tempering plus imaginary θ, up to N = 31

– results for χ (left): deviations from LO consistently positive, but a fit including

NNLO corrections is barely consistent with NLO e2 = −0.0605

– results for b2 (left): inconsistency with LO if NLO and NNLO included in the fit,

consistency forced including also NNNLO, but looks like wishful thinking ...



this year update: M. Berni (Master Thesis), C. Bonanno, MD, preliminary, in progress ...
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– Progress thanks to: new algorithm proposed by M. Hasenbusch, (PRD 96, no. 5,

054504 (2017), arXiv:1706.04443) We manage to reach up do N = 51.

– results for χ (left): ξ2χ = 1/(2πN) + e2/N
2 + e3/N

3

e2 = −0.066(13) ; e3 = 1.75(20) ; χ̃2 = 0.5

– results for b2 (right): b2 = p2/N
2 + p3/N

3 + p4/N
4 + p5/N

5

p2 = −4.9(1.1) ; p3 = 125(67) ; p4 = −1600(1000) ; p5 = −7700(6000) ; χ̃2 = 1.6

– Conclusions: NLO for χ and LO for b2 successfully checked; NNLO for χ and

NLO for b2 predicted; slow 1/N convergence, due to singularity at N = 2??



What about higher order terms in θ?

0.00 0.01 0.02 0.03 0.04 0.05 0.06
1/N

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

N
4
b 4

×102

-25338/175

- for b4 only upper bounds, and very far from LO

- confirming LO soon is really wishful thinking

- likely much larger N needed

- difficult because of freezing, but also for finite

size effects, need (L2/(ξ2N) ≫ 1 (M. Aguado and

M. Asorey, Nucl.Phys. B844 (2011) 243-265, arXiv:1009.2629)
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SUMMARY

– θ-dependence in 4D SU(N) Yang-Mills theories matches large-N predictions

in the confined phase and DIGA in the deconfined phase

– analysis of trace deformed SU(N) theories confirms the strict link between

θ-dependence and the realization of ZN center symmetry

– lattice results for 2D CPN−1 finally confirm analytical large-N predictions:

NLO for χ and LO for b2. The 1/N convergence is however quite slow, much

slower than for 4D SU(N)


