Merging of fixed points in Chern-Simons-QCD 3

Sergio Benvenuti, SISSA

Pisa, 18-7-2019
based on:
arXiv:1812.01544 \& arXiv:1902.05767, w/ Hrachya Khachatryan arXiv:19??.??, w/ Guillermo Arias-Tamargo and Diego Rodriguez-Gomez

Relativistic QFT's in $2+1$ dimensions

Interesting, for instance, for:

- theoretical laboratory for QFT's in general
- domain walls / boundary conditions of 4d QFT's (QCD)
- quantum phase transitions in condensed-matter
- Quantum Hall Effects
- graphene: multilayers, magic angles,
- emergent minimal supersymmetry

Lots of recent progress (last 3 years) in understanding dynamics, dualities.

Dynamics of gauge theories in $2+1$ dimensions

Five "simple" or weak-coupling limits:

Question: is there a CFT in the IR? Let's look at QCD $_{4}$

In 4d QCD, $\operatorname{SU}\left(N_{c}\right)$ with N_{f} Dirac flavors, standard scenario:

	non conformal, $\operatorname{SU}\left(N_{f}\right)$-symmetry	conformal (Bank-Zacs), $\operatorname{SU}\left(N_{f}\right)^{2}$-symmetry	IR-free
0			N_{f}

Chiral symmetry breaking, triggered by a quartic fermion operator crossing marginality
$\Delta\left[\Psi^{4}\right]=4$ in $4 d$: large anomalous dimension, strong coupling

$$
\mathcal{L}_{i n t}=-\Psi^{4} \quad \Rightarrow \quad\left\langle\Psi^{2}\right\rangle \neq 0
$$

Ψ^{4} is $S U\left(N_{f}\right)^{2}$-invariant but $\left\langle\Psi^{2}\right\rangle$ breaks $\operatorname{SU}\left(N_{f}\right)^{2} \rightarrow \operatorname{SU}\left(N_{f}\right)$
TWO REAL CFT'S "ANNIHILATE" INTO TWO COMPLEX CFT'S

A controlled example: bosonic QED in $4-\epsilon$ dimensions

$$
\mathcal{L}=\sum_{i=1}^{N_{f}}\left|D_{\mu} \phi_{i}\right|^{2}+\frac{1}{e^{2}} F_{\mu \nu}^{2}-\lambda\left(\sum_{i=1}^{N_{f}}\left|\phi_{i}\right|^{2}\right)^{2}
$$

One-loop beta functions:

$$
\begin{aligned}
\beta_{e^{2}} & =-\epsilon e^{2}+\frac{N_{f}}{6} e^{4} \\
\beta_{\lambda} & =-\epsilon \lambda+\frac{N_{f}+8}{6} \lambda^{2}-6 e^{2} \lambda+18 e^{4}
\end{aligned}
$$

Two charged fixed points ($\mathbb{C P}^{N_{f}-1}$-model and tricritical QED):

$$
\left(e^{2}\right)^{*}=\frac{6 \epsilon}{N_{f}} \quad \lambda^{*}=\frac{3 N_{f}+54 \pm 3 \sqrt{N_{f}^{2}-180 N_{f}-540}}{2 N_{f}\left(N_{f}+4\right)} \epsilon
$$

If $N_{f}<6(15+4 \sqrt{15}) \sim 182.95$ solutions are complex
Two loop completely changes qualitative behavior: fate in $d=3$ not clear
Let us try to tackle this question using large N_{f} in $d=3$ instead!

Large N_{f} expansion: let's try $\mathcal{N}=1$ sQED

Test a " mirror-like" duality for $\mathcal{N}=1$ sQED with 2 flavors
$U(1)$ with 2 flavors $Q_{i=1,2}$

$$
\mathcal{W}=0
$$

$\mathcal{N}=1$ Wilson-Fisher model with 7 real superfields $\mathcal{W}=\mu_{I} M_{\alpha}\left(\sigma_{I}\right)_{\alpha \beta} M_{\beta}^{\dagger}$

$$
\begin{array}{c|c|}
\hline \Delta\left[\mathfrak{M}^{ \pm 1}\right] \sim 0.362 N_{f}=0.724 & \Delta\left[M_{\alpha}\right] \sim 0.76 \\
\Delta\left[|Q|_{\text {spin-1 }}^{2}\right] \sim 1-\frac{24}{3 \pi^{2} N_{f}}=0.595 & \Delta\left[\mu_{l}\right] \sim 0.66 \\
\Delta\left[|Q|_{\text {singlet }}^{2}\right] \sim 1-\frac{0}{3 \pi^{2} N_{f}}=1 & \Delta\left[-2 \sum \mu_{l}^{2}+\sum\left|M_{\alpha}\right|^{2}\right] \sim 1 \\
\Delta\left[|Q|_{\text {spin-2 }}^{4}\right] \sim 2-\frac{48}{3 \pi^{2} N_{f}}=1.19 & \Delta\left[\mu_{l} \mu_{J}-\frac{\delta_{l J}}{3} \sum \mu_{K}^{2}\right] \sim 1.33 \\
\Delta\left[|Q|_{\text {singlet }}^{4}\right] \sim 2-\frac{0}{3 \pi^{2} N_{f}}=2 & \Delta\left[2 \sum \mu_{l}^{2}+3 \sum\left|M_{\alpha}\right|^{2}\right] \sim 2.33 \\
\hline \text { large } N_{f} \text { SB, Khachatryan 2018 } & 4-\epsilon \text { expansion SB, Benini 2018 }
\end{array}
$$

Large N_{f} works with $\sim 10 \%$ accuracy for $2_{f}+2_{b}$ complex flavors! (similar accuracy in $O(N=8)$-model or $O(N=8)$-Gross-Neveu model)

Bosonic QED's at large N_{f} in $d=3$

$$
\begin{aligned}
\mathcal{L}_{b Q E D} & =\sum_{i=1}^{N_{f}}\left|\left(\partial_{\mu}+i a_{\mu}\right) \phi_{i}\right|^{2} \\
\mathcal{L}_{\mathbb{C P}^{N_{f}-1} \text { model }} & =\sum_{i=1}^{N_{f}}\left|\left(\partial_{\mu}+i a_{\mu}\right) \phi_{i}\right|^{2}+\sigma \sum_{i=1}^{N_{f}}\left|\phi_{i}\right|^{2}
\end{aligned}
$$

Geometric series of bubble diagrams \rightarrow propagators for a_{μ} and σ
Scaling dimension of simple operators (probably \sim accurate for $N_{f} \geq 4$):

bQED (tricritical)	$\begin{aligned} & \Delta\left[\phi^{*} \phi_{\left.S U\left(N_{f}\right) \text {-adjoint }\right]}\right]=1-\frac{64}{3 \pi^{2} N_{f}} \\ & \Delta\left[\|\phi\|_{S U\left(N_{f}\right)}^{2}-\text { singlet }\right]=1+\frac{12}{3 \pi^{2} N_{f}} \\ & \Delta\left[\phi_{i}^{*} \phi_{j}^{*} \phi^{k} \phi^{\prime}-\text { traces }\right]=2-\frac{128}{3 \pi^{\prime} N_{f}} \\ & \Delta\left[\|\phi\|_{\left.S U\left(N_{f}\right)-\text { singlet }\right]}^{4}\right]=2+\frac{25 \pi^{2}}{3 \pi^{2} N_{f}} \end{aligned}$
$\mathbb{C P}^{N_{f}-1}$ model	$\begin{aligned} & \left.\Delta\left[\phi^{*} \phi_{S U(N)}\right)-\text { adjoint }\right]=1-\frac{48}{3 \pi^{2} N_{4}} \\ & \Delta\left[\phi_{i}^{*} \phi_{j}^{*} \phi^{k} \phi^{\prime}-\text { traces }\right]=2-\frac{48}{3 \pi^{2} N_{f}} \\ & \Delta[\sigma]=2-\frac{144}{3 \pi^{2} N_{f}} \\ & \Delta\left[\frac{-5 \mp \sqrt{37}}{12} \sigma^{2}+F^{\mu \nu} F_{\mu \nu}\right]=4-\frac{32(4 \pm \sqrt{37})}{3 \pi^{2} N_{f}} \end{aligned}$

Estimates of merging of $\mathbb{C P} \mathbb{P}^{F-1}$ and tricritical bQED: $N_{f}^{*} \sim 10$

SB, Khachatryan 2018
Three somewhat different ways give similar results:
$|\phi|_{S U\left(N_{f}\right)-\text { singlet }}^{4}$ in tricritical QED crosses marginality:

$$
\Delta\left[|\phi|_{S U\left(N_{f}\right)-\text { singlet }}^{4}\right]_{b Q E D}=3 \quad \rightarrow \quad N_{f}^{*} \sim \frac{256}{3 \pi^{2}} \simeq 8.6
$$

σ^{2} in $\mathbb{C P}^{N_{f}-1}$ model crosses marginality:

$$
\Delta\left[\sigma^{2}+F^{\mu \nu} F_{\mu \nu}\right]_{\mathrm{CP}}=3 \quad \rightarrow \quad N_{f}^{*} \sim \frac{32(4+\sqrt{37})}{3 \pi^{2}} \simeq 10.9
$$

$|\phi|_{S U\left(N_{f}\right)-\text { singlet }}^{4}$ in tricritical QED meets σ in $b C \mathbb{P}^{N_{f}-1}$ model:

$$
\Delta\left[|\phi|_{\text {singlet }}^{2}\right]_{b Q E D}=1+\frac{128}{3 \pi^{2} N_{f}}=\Delta[\sigma]_{\mathbb{C P}}=2-\frac{144}{3 \pi^{2} N_{f}} \quad \rightarrow \quad N_{f}^{*} \sim 9.2
$$

In particular for $N_{f}=2$ no $2^{\text {nd }}$ order phase transition:

- important for celebrated Deconfined Quantum Critical point, (VBS \leftrightarrow Neel order transition)
- consistent with numerical simulations
- consistent with rigorous numerical bootstrap bounds

Chern-Simons-QCD $3: S U\left(N_{c}\right)_{k}$ with N_{f} fermions

Regime $k \geq \frac{N_{f}}{2}$: Bosonization duality

$$
S U\left(N_{c}\right)_{k} \mathrm{w} / N_{f} \psi^{\prime} s \quad \Longleftrightarrow \quad U\left(k+\frac{N_{f}}{2}\right)_{-N_{c}} \mathrm{w} / N_{f} \phi^{\prime} s
$$

- massive phases match because of level-rank duality for TQFT's
- large- N_{c} \& large- k limit: exact checks \rightarrow CFT Aharony,Minwalla,...
- $N_{f}=1$: holographic duality with Vasiliev higher-spin theory on $A d S_{4}$

Regime $k<\frac{N_{f}}{2}$: possible region with "quantum-phase" and symmetry breaking

$$
U\left(N_{f}\right) \rightarrow U\left(N_{f} / 2+k\right) \times U\left(N_{f} / 2-k\right)
$$

Komargoski,Seiberg 2017
Armoni,Dumitrescu,Festuccia,Komargoski 2018

Chern-Simons- QCD_{3} : phase diagram

Domain walls of $Q^{C D} D_{4}$ at $\theta_{Q C D}=\pi$:

$$
S U\left(N_{c}\right)_{-1+N_{f} / 2} \mathrm{w} / N_{f} \Psi^{\prime} \mathrm{s}
$$

Gaiotto,Komargoski,Seiberg 2017
Argurio,Bertolini,Bigazzi,Cotrone,Niro 2017
What can we say from large N_{f} expansion? Compute scaling dimensions of quartic operators and look for $\Delta\left[\Psi^{4}\right]=3$

CS-QCD 3 at large N_{f} : bilinear and quartic operators

Arias-Tamargo, SB, Rodriguez-Gomez
The bilinears, $\bar{\Psi}_{i} \Psi^{j}$, transform in the adjoint plus singlet of $\operatorname{SU}\left(N_{f}\right)$:

$$
\begin{aligned}
& \Delta\left[\Psi \Psi_{\text {adjoint }}\right]=2-\frac{64\left(N_{c}^{2}-1\right)}{3 \pi^{2}\left(1+\left(\frac{8 k}{\pi N_{f}}\right)^{2}\right) N_{c} N_{f}}+O\left(1 / N_{f}^{2}\right) \\
& \Delta\left[\Psi \Psi_{\text {singlet }}\right]=2-\frac{128\left(N_{c}^{2}-1\right)\left(2\left(\frac{8 k}{\pi N_{f}}\right)^{2}-1\right)}{3 \pi^{2}\left(1+\left(\frac{8 k}{\pi N_{f}}\right)^{2}\right)^{2} N_{c} N_{f}}+O\left(1 / N_{f}^{2}\right)
\end{aligned}
$$

In principle we need to study mixing of four $\Psi_{\text {singlet }}^{4}$ operators (WIP)
In the regime $N_{c} \gg 1$, only two double-trace quartic ops are into play:

$$
\begin{aligned}
& \Delta\left[\left(\Psi \Psi_{\text {adjoint }}\right)^{2}\right] \sim 2 \times \Delta\left[\Psi \Psi_{\text {adjoint }}\right] \sim 4-\frac{c_{1}\left(k / N_{f}\right) N_{c}}{N_{f}}+O\left(N_{c}^{2} / N_{f}^{2}\right) \\
& \Delta\left[\left(\Psi \Psi_{\text {singlet }}\right)^{2}\right] \sim 2 \times \Delta\left[\Psi \Psi_{\text {singlet }}\right] \sim 4-\frac{c_{2}\left(k / N_{f}\right) N_{c}}{N_{f}}+O\left(N_{c}^{2} / N_{f}^{2}\right)
\end{aligned}
$$

Marginality crossing of the two double trace $\Psi_{\text {cinolet }}^{4}$

$\mathrm{SU}\left(N_{c}\right)_{k}+N_{f} \psi^{\prime} \mathrm{s}$

Inside blue curve: $\Delta\left[\left(\Psi \Psi_{\text {adjoint }}\right)^{2}\right]<3 \Rightarrow\left\langle\Psi \Psi_{\text {adjoint }}\right\rangle \neq 0$
Inside red curve: $\Delta\left[\left(\Psi \Psi_{\text {singlet }}\right)^{2}\right]<3 \quad \Rightarrow \quad\left\langle\Psi \Psi_{\text {singlet }}\right\rangle \neq 0$
Blue dot: comes from $\Delta\left[\Psi \Psi_{\text {adjoint }}\right]$ at $O\left(1 / N_{f}^{2}\right)$, known for $k=0$ (important: confirms that merging region is non-empty)

Qualitative picture and relation to domains walls

- Domain wall theories

Conjecture:
symmetry-breaking on the wall $\leftrightarrow \chi$-symmetry-breaking in the $3+1$ d bulk

SUMMARY:

non susy $2+1 d$ gauge theories at strong coupling (small $N_{f} \&$ small k): often no $2^{\text {nd }}$ order phase transition
Large N_{f} techniques useful in $d=3$: minimal susy, QED and CS-QCD
Dualities for $1^{\text {st }}$ order phase transitions less powerful (but complex CFT's)

FUTURE DIRECTIONS:

More general $4 d$ gauge theories (quiver, rank-2 matter):
talk
domains walls
$3 d$ dualities and IR scenarios (e.g. quantum phases)
$4 d$ IR scenarios (many different proposals, domain walls may help) $4 d$ non susy dualities?

Numerical conformal bootstrap:
CFT's with intermediate number of flavors in $3 d$ and $4 d$?

