2019/03/14: Optimization of ProtoProto Plate Source

Michael Poehlmann

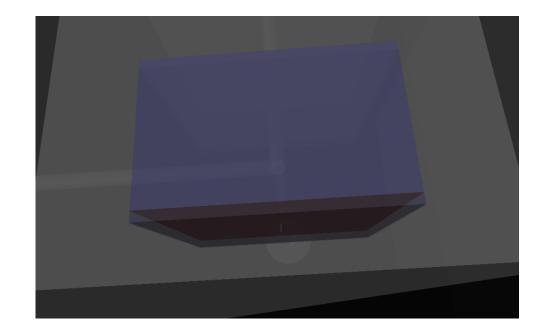
Passage of Particles Through Materials

- First examined the percentage of gammas/alphas that passed through tungsten and steel
- Generators
 - Isotropic: uniform hemisphere
 - Longer average path length through material
 - Beam: perpendicular to material surface
 - Shorter average path length through material

Passage of Gammas Through Materials

Tungsten Thickness (mm)	# Pass Through Tungsten (beam)	# Pass Through Tungsten (isotropic)
1	6909 / 5e6 = 0.13%	774 / 5e6 = 0.015%
2	3 / 5e6 = 6e-05%	1 / 5e6 = 2e-05%
3	0 / 5e6 = 0%	0 / 5e6 = 0%

Steel Thickness (mm)	# Pass Through Steel (beam)	# Pass Through Steel (isotropic)
0.1	461967 / 5e5 = 92.3%	394753 / 5e5 = 78.9%
0.3	392781 / 5e5 = 78.5%	279626 / 5e5 = 55.9%
0.5	333024 / 5e5 = 66.6%	205462 / 5e5 = 41.0%
0.7	281815 / 5e5 = 56.3%	155245 / 5e5 = 31.0%
1.0	219467 / 5e5 = 43.8%	103403 / 5e5 = 20.6%


Passage of Gammas Through Materials

- As expected, fewer primaries pass through when using isotropic distribution in all cases
- Thinner steel lowers the probability of scattering leading to a more collimated beam
- Practically all off-hole gammas killed by at least 3mm thick steel
- With 0.5mm of SS or less, >40% of gammas that are within the tungsten hole will pass through to LAr

Simulation Parameters

Geometry

- Tungsten mask (begins 1mm above bottom acrylic) with hole in center
- Stainless steel cathode directly above tungsten
- Primary:
 - 60 keV gammas uniformly generated from 0.5x0.5 cm² square centered on hole at bottom surface of tungsten
 - Hemispheric momentum distribution to account for isotropic nature of emission
- Objective: majority of clusters should have radius < 5 mm

Cluster Spread in TPC: Steel Cathode Thickness

Cathode Thickness (mm)	Mask Thickness (mm)	Hole Width (mm)	Radial RMS (mm)	Events w/ Single Cluster in TPC	
0.2	5	1	5.09 ± 0.14	614 / 12.5e6 = 4.91e-03%	
0.5	5	1	4.98 ± 0.15	503 / 12.5e6 = 4.02e-03%	
0.7	5	1	5.14 ± 0.17	431 / 12.5e6 = 3.45e-03%	
1.0	5	1	5.57 ± 0.21	332 / 12.5e6 = 2.66e-03%	

Cathode Thickness (mm)	Mask Thickness (mm)	Hole Width (mm)	Radial RMS (mm)	Events w/ Single Cluster in TPC	
0.2	5	2	5.526 ± 0.039	10131 / 12.5e6 = 8.10e-02%	
0.5	5	2	5.729 ± 0.046	7853 / 12.5e6 = 6.28e-02%	
0.7	5	2	5.870 ± 0.051	6573 / 12.5e6 = 5.26e-02%	
1.0	5	2	6.076 ± 0.060	5097 / 12.5e6 = 4.08e-02%	

Cluster Spread in TPC: Tungsten Mask Thickness

Cathode Thickness (mm)	Mask Thickness (mm)	Hole Width (mm)	Radial RMS (mm)	Events w/ Single Cluster in TPC	
0.5	1	1	9.469 ± 0.044	23290 / 12.5e6 = 1.86e-01%	
0.5	2	1	6.311 ± 0.067	4465 / 12.5e6 = 3.57e-02%	
0.5	3	1	5.365 ± 0.091	1732 / 12.5e6 = 1.39e-02%	
0.5	5	1	4.98 ± 0.15	503 / 12.5e6 = 4.02e-03%	
0.5	7	1	3.59 ± 0.17	205 / 12.5e6 = 1.64e-03%	
0.5	10	1	2.48 ± 0.18	87 / 12.5e6 = 6.96e-04%	

Cluster Spread in TPC: Hole Diameter

Cathode Thickness (mm)	Mask Thickness (mm)	Hole Width (mm)	Radial RMS (mm)	Events w/ Single Cluster in TPC	
0.5	5	0.5	1.51 ± 0.19	31 / 12.5e6 = 2.48e-04%	
0.5	5	1	4.98 ± 0.15	503 / 12.5e6 = 4.02e-03%	
0.5	5	2	5.729 ± 0.046	7853 / 12.5e6 = 6.28e-02%	
0.5	5	3	6.095 ± 0.034	37949 / 12.5e6 = 3.04e-01%	

0.5 accounts for hemisphere generator y BR = 35.9% for 60keV gammas Area ratio = $(0.25 \text{ cm}^2) / (\text{pi cm}^2) = 0.07959$

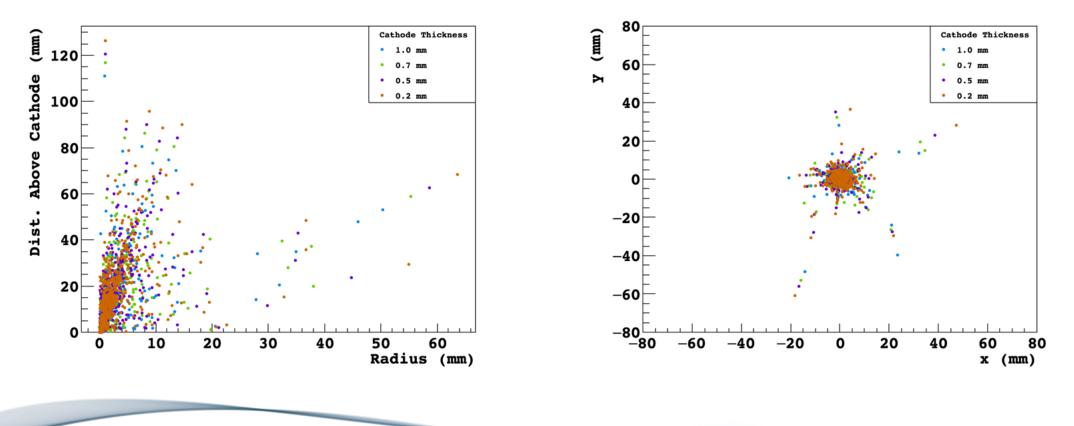
Source Activity

- Plate source = 40k Bq for diam=20mm disk
- Calculated expected event rate for one hole over plate source

Rate = $0.5 \times (activity) \times (\gamma BR) \times (frac evts w/cluster) \times (\frac{area of MC generator}{area of source plate})$

Event rate (Hz) = 571.4×(frac evts w/cluster)

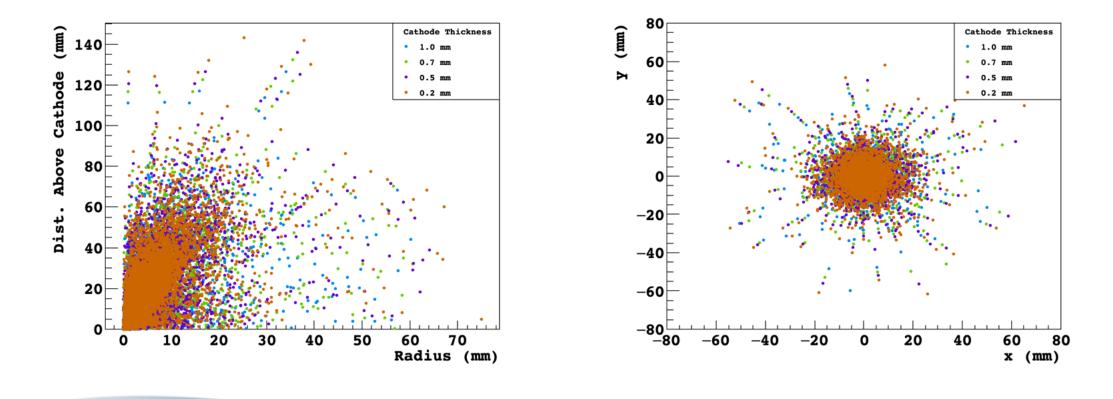
Cathode Thickness (mm)	Mask Thickness (mm)	Hole Width (mm)	Radial RMS (mm)	Events w/ Single Cluster in TPC	Event rate	Time for 1000 Events
0.2	5	1	5.09 ± 0.14	614 / 12.5e6 = 4.91e-03%	2.82e-2 Hz	9.85 hrs
0.5	7	1	3.59 ± 0.17	205 / 12.5e6 = 1.64e-03%	9.41e-3 Hz	29.5 hrs
0.5	10	1	2.48 ± 0.18	87 / 12.5e6 = 6.96e-04%	4.00e-3 Hz	69.4 hrs
0.5	5	0.5	1.51 ± 0.19	31 / 12.5e6 = 2.48e-04%	1.42e-3 Hz	195 hrs


Backup Slides

Mask thickness = 5 mm Hole diameter = 2 mm

Z vs. R

Y vs. X

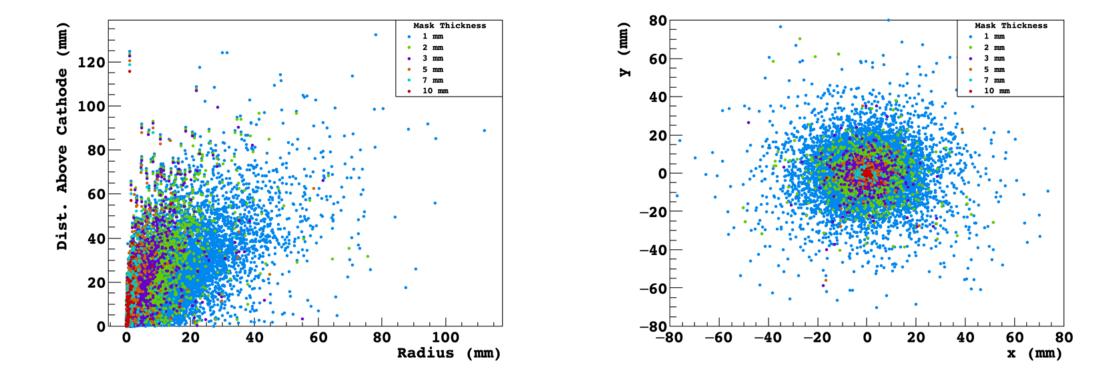


UCDAVIS

Mask thickness = 5 mm Hole diameter = 1 mm

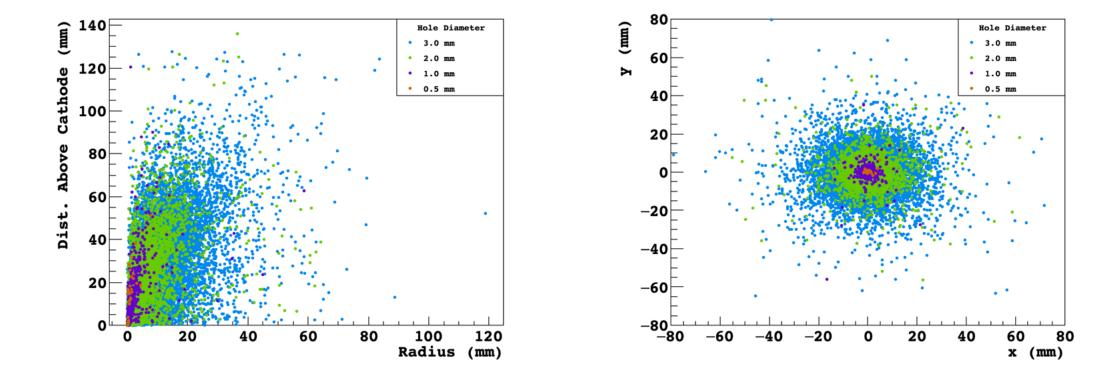
Z vs. R

Y vs. X



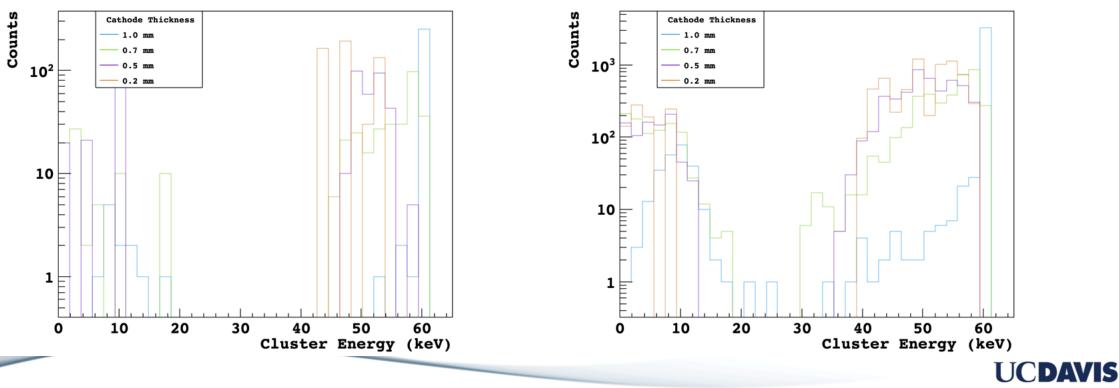
Cathode thickness = 0.5 mm Hole diameter = 1 mm

Z vs. R



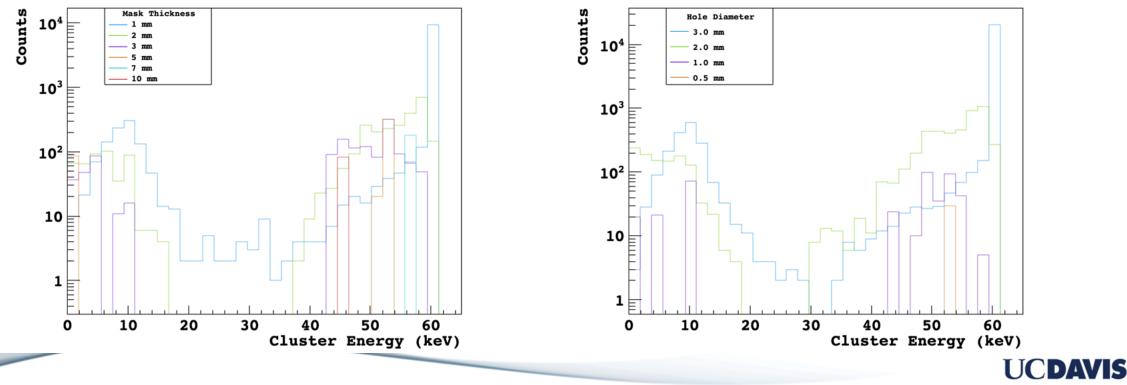
Cathode thickness = 0.5 mm Mask thickness = 5 mm

Z vs. R



Cluster Energy

Mask thickness = 5 mm Hole diameter = 2 mm


Mask thickness = 5 mm Hole diameter = 1 mm

Cluster Energy

Cathode thickness = 0.5 mm Hole diameter = 1 mm

Cathode thickness = 0.5 mm Mask thickness = 5 mm

