DE LA RECHERCHE À L'INDUSTRIE

EIC activities in France

F. Sabatié – CEA Saclay - Irfu/DPhN

- Overview of french involvement
- EIC activities at IPNO (C. Munoz)
- EIC activities at CPHT (C. Marquet)
- EIC activities at CEA Saclay
- EIC activities in Europe : STRONG-2020

Already part of the EIC UG:

- CNRS/IN2P3 IPN Orsay (& Subatech)
- Ecole Polytechnique CPhT & LLR
- CEA Saclay DPhN & DEDIP

Soon to come:

- CNRS/IN2P3 LPT
- CEA Saclay IPhT

37 registered members of EIC UG

Officially:

• EIC is on the CEA Saclay roadmap: interest in physics, detectors

interest in physics, detectors and accelerators (potential production site)

• EIC was presented to the CNRS/IN2P3 Scientific Council in 2018 But not yet an IN2P3 official project (considered too early)

Electron-Ion Collider User Group Meeting

International Advisory Committee

Daniël BOER: Groningen Silvia DALLA TORRE: INFN/Trieste Abhay DESHPANDE: BNL/Stony Brook Rolf ENT: JLAB Yuji GOTO: RIKEN Tanja HORN: CUA Charles HYDE: ODU Richard MILNER: MIT Carlos MUÑOZ CAMACHO: CNRS/IN2P3 Marco RADICI: INFN/Pavia Franck SABATIÉ: CEA-Saclay Andrei SERYI: JLAB Ernst SICHTERMANN: LBNL Bernd SURROW: Temple Thomas ULLRICH: BNL Ferdinand WILLEKE: BNL Rikutaro YOSHIDA: JLAB

The world's most powerful microscope for studying the "glue" that binds the building blocks of visible matter © aD STRUCTURE OF PROTON AND NUCLEI © GLUON SATURATION AND THE COLOR GLASS CONDENSATE © SOLVING THE MYSTERY OF THE PROTON SPIN © QUARK AND GLUON CONFINEMENT

https://indico.in2p3.fr/event/EICUG2019

Local organizing Committee

Francesco BOSSU: CEA-Saclay Valérie FROIS: CNRS/IN2P3, Secretary Carlos MUÑOZ CAMACHO: CNRS/IN2P3 Franck SABATIÉ: CEA-Saclay

EIC TrFrance

- INT Workshop (many contributions from theorists, phenomenologists)
- EIC White Paper (part of the writing committee)
- EIC R&D eRD1 (IPNO) and eRD3 (CEA Saclay)
- LDRD with JLab : Geometry tagging (IPNO)
- LDRD with BNL « Zigzag » (CEA Saclay)
- NEWS on the french side:
 - Recent hiring of an EIC physicist at CEA Saclay
 - Soon: position on EIC/Jlab physics at IPNO
 - Soon: position on GPD theory/phenomenology at CEA Saclay
 - Involvement of CEA Saclay on sPHENIX
 - IN2P3/LPT and CEA/IPhT (theory labs) will soon join the EICUG

CPhT Contributions

many aspects have been investigated, e.g.

[Lorcé, Moutarde, Trawinski, arXiv:1810.09837]

EIC TrFrance

at small $k_{\rm T}$: the process dependence is very relevant saturation effects impact the various gluon TMDs in very different ways

the connections between parton evolution in QCD and statistical physics (branching random walks) can be exploited to predict the rapidity gap distribution

CEA Saclay Contributions

Distortions Within a Time Projection Chamber

- The TPC active volume is very sensitive to several factors :
 - Temperature/Pressure/Gas => Drift velocity variations
 - Beam Type/Luminosity => Primary lons
 - Gas Amplification => Ions Feedback
- A TPC monitor composed on cylindrical MM layers inside and outside of the TPC will help correct for :
 - Internal Distortions (Drift velocity + Space Charge)
 - Event pileup in the case Drift time>Time between Events

EIC TrFrance

Space charge effects

14/03/2019

- 4 layers; technology-driven azimuthal and longitudinal segmentation
- 2D readout with ~100 µm spatial resolution

- Internal structure modeled according to the real-life prototypes
- ~0.5% X/X₀ per layer
- Potential early application in sPHENIX TPC

Orientation of CEA Saclay MPGD R&D towards an EIC

- Reduce material budget
 - → 2D detectors
 - → Lightweight detectors

- Reduce number of electronics channels
 - → Genetic Multiplexing
- ▶ ...while keeping high position resolution
 → Zigzag R&D

- Reduce ion backflow (for TPC readout mostly)
 - → Hybrid or double-mesh Micromegas

Focus on Zigzag LDRD with BNL

In October 2017: LDRD "MPGD-4-IEC" selected at BNL **1.2 M\$** is obtain on 3 years

- 500 k\$ for BNL
- 300 k\$ for CEA Saclay <- Laser ablation R&D
- 200 k\$ for SBU

3. Laser Etch

(optimized, low gain)

Clear trend in improved performance

2. Chemical Etch

(optimized)

Reduced the gap width, increased pad overlap, and increased the level of conductor

Beam tests at FNAL:

- **Exposed several 4-GEM detectors** equipped to ~1cm x 1cm 120GeV prot beam
- Studied multiple zigzag

F. Sabatié – CEA Saclay

- Also tested Micromegas(MM)+multi-Z and GFM+MM+multi-77
- ZZ design parameters have very ٠ significant impact on performance!

proton				
	pitch/period	2mm/0.5mm	2mm/0.56mm	2mm/0.5mm
llti-ZZ,	Strip Overlap / Conductor coverage	40% / 66%	83% / 63%	87% / 90%
	Gap width	82µm	84µm	22µm
	Position Resolution / Efficiency due to removal of single pad hits	93μm (56% eff.)	70μm (99% eff.)	63μm (100% eff.
e!				
EIC TrFrance		14/03/2019		

1. Chemical Etch

(un-optimized)

ZZ pattern

13

The next frontier: 2D ZZ pattern

2D Zigzag strips : Diamond design with Gerber view (a) and prototype board (b)

For FNAL beam test plans for 2019:

- Mechanics to hold 8 detectors on moving XY table (BNL)
- Readout + cables for 4096 channels with DREAM (Saclay)
- The board is the same for Micromegas and GEM !
 - 4 micromegas bulk with
 - 2D zigzag
 - Pillar study (how to remove pillars shadows on residual)
 - 1D zigzag with plain resistive layer !
 - 4 GEM

• Absolutely needed for analysis of Deep Exclusive Experiments (DVCS, DVMP, etc.)

• Project to extend it to TMD analysis as well (within European project)

 Co-organization of recent workshop in Warsaw : Prospects for extraction of GPDs from global fits of current and future data

IPN Orsay Contributions (Slides from C. Munoz)

- Simulations & phenomenology
- Motivations for EIC:
 - First measurements of charmonia hadronization
 - Indirect access to saturation (interaction with nuclear matter is dominated by low energy gluons)
- Challenges:
 - High energy reduces the signal
 - High luminosity is key for quarkonia measurements
- Results published in 2 White Papers:

(ArXiv:1108.1713 and Eur.Phys.J. A52 (2016) no.9, 268)

Geometrical tagging:

- Impact parameter measurement
- Participation to a new working group at JLab (LDRD Geometry tagging)
- Motivations beyond hadronization (centrality dependence of nuclear effects, shadowing...)
- In synergy with developments for JLab CLAS12

EIC TrFrance

European STRONG-2020 project

0

10 M€ project for 4 years, starting on June 1st 2019

32 Work Packages

- Management and Coordination
- Dissemination and Communication
- 7 Transnational Infrastructures (COSY, MAMI, ELSA, GSI, LNF, CERN, ECT*)
- 2 Virtual Infrastructures
- Experimental / Theoretical / Instrumentation Activities
 - 7 Networking Activities (NA)
 - 14 Joint Research Activities (JRA)

44 participating institutions

 <u>16 countries</u>: Austria, Belgium, Switzerland, Germany, Spain, Finland, France, Croatia, Ireland, Italy, Montenegro, The Netherlands, Poland, Portugal, Sweden and United Kingdom

List of STRONG2020 WP with direct relationship to EIC:

- VA1- A Virtual Access on Nucleon Structure (= PARTONS)
- NA2- Small-x Physics at the Large Hadron Collider and in new DIS experiments
- NA4- Proton Radius European Network
- JRA4- 3D structure of the nucleon in momentum space: opening the next stage
- JRA5- Generalized Parton Distributions
- JRA6- Challenges for Next-generation DIS facilities (PI: CEA Saclay & U Glasgow)
- JRA9- Tracking and Ions Identifications with Minimal Material budget
- JRA13- Polarized Electrons, Positrons and Polarimetry
- JRA14- Micro Pattern Gaseous Detectors for Hadron Physics

A lot of progress towards EIC science and detectors should be expected