

Latest Results from the Pierre Auger Observatory

Francesco Salamida for the Pierre Auger Collaboration University of L'Aquila and INFN LNGS

International conference PUMA22 - Probing the Universe with Multimessenger Astrophysics 23-30 September 2022, Sestri Levante

The Strange Science Case of the Ultra High Energy Cosmic Rays

Particles with E = 10^{17} - 10^{20} eV , \sqrt{s} = 14-450 Tev

ASTROPHYSICS

- What is the nature and origin of UHECRs?
- What is causing the suppression of the flux at the highest energies?
- Which are the sources? can we perform UHECRs astronomy?
- How are UHECRs accelerated to such extreme energies?

FUNDAMENTAL PHYSICS

- Tests of fundamental interactions and
- their models in extreme energy regimes
- Constrain or find hints of new phenomena (e.g. Lorentz invariance violation)

How are UHECR produced?

With LHC technology need accelerator of size of Mercury's orbit to reach 10²⁰eV

Realistic constraints more severe

- small acceleration efficiency
- synchrotron & adiabatic losses
- interactions in source region

How they reach Earth?

Processes during extragalactic cosmic ray propagation

- Adiabatic energy losses due to the expansion of the Universe
- Interactions with photon backgrounds:
 - Pair production (Cosmic microwave background)
 - Disintegration (Extragalactic background light)
 - Pion production

- NO He >50 EeV, CNO > 100 EeV expected
- Extreme-E CRs can only be: local, &/or protons, &/or heavy nuclei
- source or propagation scenario?
 Composition at the highest energies and the detection of cosmogenic neutrino and/or photons is of key importance

How to measure UHECRs?

- Due to the low flux of UHECRs (1 particle per km² yr⁻¹ above 10¹⁹ eV) we need huge instrumented areas for detection
- UHE particles interacting with atmosphere (mainly N and O) initiate a cascade of ionised particles and electromagnetic radiation i.e extensive air shower (EAS)
- 3 components: muonic, hadronic, electromagnetic

The Pierre Auger Observatory

Fluorescence detector (FD)

- 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV
- HEAT (3 telescopes), FoV: 30 60°, E>10¹⁷ eV

Surface detector (SD)

- 1660 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV
- 61 stations in 0.75 km grid, 23.5 km²,E > 10^{17.5} eV

Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km2 array

Underground muon detector

17 buried scintillators

Auger Phase I data taking from 2004 on (from 2008 with the full array):

- > 120.000 km²sr yr for anisotropy
- > 90.000 km²sr yr for spectrum

Auger Phase II data taking from 2023 to 2030...

- Multiple detectors
- UHECR detector test bench facility

Fluorescence Detectors

- Aperture of the pixels: 1.5°
- FD measures the fluorescence light produced by the excitation of nitrogen in the atmosphere by the EAS particles
- 30° fov in elevation and azimuth for each telescope
- ~14% duty cycle (data taking during moonless clear nights)

Surface detectors

SD measure the Cherenkov light produced in water by EAS particles at ground
~100% duty cycle

The hybrid concept

Calibration with FD energy scale

The Auger energy spectrum

SD Data sample: 215030 events 1/1/2004 – 31/8/2018 Exposure: 60400 km² sr

- Five measurements
- more than 3 order of magnitudes
- same energy scale
- Fluxes in agreement within systematic uncertainties (1%-7%)

The energy spectrum

The energy spectrum in Auger and TA

Mass composition

<InA> and variance

 Model independent trend in <InA>

 Pure composition excluded below and around the ankle

 QGSJETII04 is in tension with data

Auger Prime and NN approach will provide additional info on mass composition

Hadronic interactions models

Astrophysical scenarios

Large Scale anisotropy

Auger - Science 315 (2017) 1266

Rayleigh analysis of the first harmonic in right ascension

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Intermediate Scale anisotropy

Blind search for overdensities

- Energy [32-80] EeV zenith up to 80°
- 2635 events between 1/1/2004 and 31/12/2020
- Centaurus A region:
 - \circ most significant excess, 2.2 σ p.t., at ψ =24° E>41 EeV
 - \circ direction fixed at Cen A $\,$ 3.9 σ p.t., at ψ =27° E > 41 EeV $\,$
- autocorrelation with (GC, GP, SGP) not significant

Data available at https://doi.org/10.5281/zenodo.6504276

Likelihood test for anisotropy with astroph. catalogs Most significant signal at E_{th} = 38-41 EeV, ψ =23° - 27°, signal fraction 6-15%

Catalog	Eth [EeV]	Ψ[deg]	α [%]	TS	Post-trial p-value	-
All galaxies (IR)	40	24^{+16}_{-8}	15^{+10}_{-6}	18.2	6.7×10^{-4}	4σ for SB 3.1 σ for
Starbursts (radio)	38	25^{+11}_{-7}	9+6	24.8	3.1×10^{-5}	
All AGNs (X-rays)	41	27^{+14}_{-9}	8+5	19.3	4.0×10^{-4}	
Jetted AGNs (y-rays)	40	23 ⁺⁹ -8	6^{+4}_{-3}	17.3	1.0×10^{-3}	Jetted AGN

Multi-messenger and Fundamental Physics

Different cosmic messengers provide complementary information about potential sources (see E. De Vito this conference)

- Cosmic rays (nuclei):
 - Accelerated by extreme astrophysical events
 - Deflected by magnetic fields

• Gamma-rays:

- Propagate in straight lines
- Easily absorbed at ultra-high energies

Neutrinos:

- Not deflected and not absorbed
- Low interaction rate i.e difficult to detect

... and Fundamental Physics: Dark Matter, **LIV**, BSM

Photon searches

Photon signature:

muon

hadrons

steeper LDF and broader signal

Recently published on Ap. J. 933 (2022)125: 11 candidates > 10 EeV (SD) 22 candidates > 1 EeV (Hybrid)

Targeted search NO Candidates found

 In coincidence of known sources including CenA and the Galactic Center [UL extrapolating HESS flux] GW follow-up (4 events)

Top-down model disfavored

- CR proton dominated scenario disfavoured
- constraining mass and lifetime of dark matter particles
- Auger Phase II: additional information for better photon/hadron separation or photon discovery

UHE Neutrino searches (SD)

Limits on the LIV with air showers

Lorentz Invariance Violation effects can be studied using a modified dispersion relation (Coleman, Glashow)

Limits on the LIV

- From MC muons are very sensitive to LIV
- Using the muon fluctuations measurement at the Pierre Auger Observatory

Auger Prime upgrade

SCIENCE CASE

- Origin of the flux suppression, GZK vs. maximum energy scenario
- Search for a flux contribution of protons up to the highest energies at a level of ~ 10%
- Study of extensive air showers and hadronic physics √s=70 TeV

UPGRADE PLAN

- Scintillators SSD
- Upgraded and faster electronics UUB (40 MHz -120 MHz)
- Extension of dynamic range with small **sPMT**
- Underground buried **UMD** detectors
- Radio antennas **RD**

Auger Prime status

1436 SSD stations deployed

25% of the array equipped with UUB and SSD-PMT and sPMT

Installation completed with UUBs in early 2023

Super Hybrid event

Station 1622 r/m = 741 S/VEM = 1214.9

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Station 824 r/m = 4535 S/VEM = 2

Auger as a laboratory for Earth phenomena

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Auger Open Data

Pierre Auger Observatory Open Data

February 2021 release

https://opendata.auger.org doi 10.5281/zenodo.4487613

- 10% cosmic ray data
- 100% atmospheric data
- Close to raw data and higher level reconstruction
- Surface and Fluorescence Detectors
 JSON and summary CSV files
 Python code for data analysis

Conclusion

OPEN QUESTIONS

- **1.** What is the origin of flux suppression?
 - fundamental constraints on sources and their properties
- 2. is there a fraction of protons above ~5 10¹⁹eV?
 - feasibility of charged particle astronomy
 - proof for future experiments
- **3.** can we disentangle composition and hadronic interaction systematics ?
 - constraints on hadronic multiparticle production from EAS
 - constraints on new physics beyond the reach of LHC
 - new measurements at accelerators

FUTURE STEPS

- Increase in statistics at UHE
- Composition sensitivity at and above the suppression region (E>4 10¹⁹ eV)
- More data on neutrinos (and photons)
- More information on hadronic interactions

Thanks for listening!

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Backup slides

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Mass composition (prospects)

Neural network approach tested with hybrid events

Promising in view of the additional info provided by the upgraded SD detector

Large scale anisotropy

Weighted Fourier Analysis to obtain modulation in right ascension and azimuth

Auger data: Exposure >92000 km² sr yr

OBSERVATION (>50): 3D dipole above 8 EeV at $(\alpha, \delta) = (98^{\circ}, -25^{\circ})$: $(6.6^{+1.2}_{-0.8})$ %, 125° away from GC the UHECRs are extra-galactic above 8 EeV, while predominantly Galactic below few EeV

F.Salamida, University of L'Aquila and INFN LNGS, 105° Congresso Nazionale SIF

Full sky coverage with Auger + TA

Large Scale Anisotropy

Energy threshold

- 8.86 EeV for Auger
- 10 EeV for Telescope Array
- Agreement with Auger alone, smaller uncertainty
- Hint for a quadrupole moment

Intermediate Scale Anisotropy (<30°)

Energy threshold

- 40 EeV for Auger
- 53.2 EeV for Telescope Array

Blind search

20° radius around (α =12^h50^m, δ = - 50°), 2.6 σ post-trial 15° radius around (α = 9^h30^m, δ = +54°), 1.5 σ post-trial

Events

Events

969 events

•~31000 events

 $E_{Auger} \ge 8.86 \text{ EeV}, E_{TA} \ge 10 \text{ EeV}; 45^{\circ} \text{ smearing}$

Cosmogenic neutrinos

CONSTRAIN ON PROTON MODELS

UHECR source evolution models parameterized as :

 $\Psi(z) \propto (1+z)^m$

m: source evolution parameter z max : the maximal redshift at which UHECR are accelerated

Exclusion of a significant region of parameter space (z_{max}, m) from non observation of v

F.Salamida, University of L'Aquila and INFN LNGS, 105° Congresso Nazionale SIF

UHE neutrinos: point like sources

Steady sources

- Good sensitivity at EeV energies in a broad range in declination
- Energy range complementary to IceCube and Antares

Transient sources (e.g GW)

- ANTARES, Icecube & Auger searched for in coincidence with GW170817 from TeV to EeV
- Very good Auger sensitivity because source was in the FoV of Earth Skimming at the moment of merger
- Sensitive to neutrino luminosities below 5x10⁴⁶erg/s for certain periods during 1-day follow-up searches

F.Salamida, University of L'Aquila and INFN LNGS, 105° Congresso Nazionale SIF

The future of UHECR: Auger Prime detectors

VERTICAL SHOWERS

Significance of distinguishing two different realisations of "maximum rigidity model" :

- as it predicts, i.e. no protons at UHE
- adding 10% protons

$>5\sigma$ in 5 years of operations

HORIZONTAL SHOWERS

RADIO Hybrid: E_{rad} from radio muons from WCD

Hybrid and SD photon search

Upper limits on diffuse photon flux

Strictest limits at E> 0.2 EeV

11 candidates > 10 EeV (SD)

22 candidates > 1 EeV (Hybrid)

Targeted search

In coincidence of known sources including CenA and the Galactic Center [UL extrapolating HESS flux]

GW follow-up (4 events)

NO Candidates found

- Top-down model disfavored

- CR proton dominated scenario (also the most pessimistic cases) disfavoured
- constraining mass and lifetime of dark matter particles → see R. Aloisio at this Conf.
- Auger Phase II: additional information for better photon/hadron separation or photon discovery

UHE neutrinos with the SD

Upper limits on the diffuse neutrino flux

Pierre Auger Coll., JCAP 10 (2019) 022

Identification criteria applied "blindly" to the search data set

Point-like sources

also in coincidence with observations by other experiments For example TXS 0506+056

Coincidence with GW

For example GW170817 GW follow-up (62 events, stack analysis)

NO Candidates found

NO Candidates found

Upper limits set assuming dN/dE = k E⁻² \rightarrow k \sim 4.4 x 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹[0.1 - 25] EeV Maximum sensitivity ~ 1 EeV

Blind search

Search with little to **no** *a priori*: most prominent overdensity in the whole observable sky

Parameter space is scanned in

- Direction (R.A., Dec)
- Threshold energy 32 EeV \leq Eth \leq 80 EeV
- Top-Hat angular scale 1° $\leq \psi \leq$ 30°

Largest significance post-trial 2.2σ found at (RA, dec)=(196.3°, -46.6°) or (I, b)=(305.4°, 16.2°) Nobs = 156 vs Nexp=98 at Eth 41 EeV and Ψ =24°

F.Salamida, University of L'Aquila and INFN LNGS, PUMA22 - Probing the Universe with Multimessenger Astrophysics

Tension on composition between Auger and TA?

Auger data show trend towards heavier composition above 10^{18.4} eV

- TA data have less statistical separation power and larger systematics
- TA data compatible with mix of 4 elements with 75% (p+He) below 10^{19.1} eV
- direct comparison is difficult (AUGER unbiased measurement, TA biased by detector acceptance)
- CAVEAT: TA analysis with QGSJetII-04 only [excluded by Auger σ(Xmax) measurement]

p-air cross section

Telescope Array (TA)

Middle Drum: based on HiRes II

Northern hemisphere: Utah, USA

The future of UHECR: TA x 4

AIM: increase the coverage up to ~3000 $\rm km^2$ to increment the statistics at UHE

- **SD array:** increased by 500 stations with 2 km spacing
- **FD telescopes:** increased by 4 FD in the Northern site, 8 in the Southern site

Feb. 19 - Mar. 12, 2019:

- 257 SDs
- 6 communication towers

The future of UHECR: POEMMA

GOAL: observation of UHE cosmic particles with $E \gtrsim 10^{19} \mbox{ eV}$ to study their origin

- huge gain in exposure (~10⁵ km² sr yr) for both charged CRs and neutrinos
- full sky coverage of the celestial sphere
- sensitivity to neutrinos > 2×10^{19} eV from FD of v-induced EAS
- follow-up of transients

Probe Of Extreme Multi-Messenger Astrophysics

- 2 satellites flying in loose formation
- 4 m wide FoV (45°) Schmidt mirrors
- fast (1µs) UV camera for fluorescence observation + ultrafast (10 ns) optical camera for Cherenkov obs.

The future of UHECR: FAST

Fluorescence detector Array of Single-pixel Telescopes

- UHECR and neutral particles E > 10^{19.5} eV
- mass discrimination on event by event basis
- huge target volume with lower cost w.r.t current FDs
- Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array"

FAST Project Fuerorer delect Arity of Strage puel Testerorer Premi 584 KN/17 - Frem KR.279/ ADMR Www.fast-project.org

- <page-header><page-header><page-header>
- Smaller optics and single or a few pixels 1 m² aperture, 15°×15° FoV
- Low-cost and simplified telescope
- installed for X-calibration and trigger at Auger and TA

Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72