



# DEMNUni: CMB - galaxy cross-correlation in the presence of massive neutrinos

# Viviana Cuozzo

### viviana.cuozzo@roma2.infn.it

Carmelita Carbone (carmelita.carbone@inaf.it), Matteo Calabrese (calabrese@oavda.it), Elisabetta Carella (elisabetta.carella@unimi.it ), Marina Migliaccio (marina.migliaccio@roma2.infn.it)

International conference PUMA22: Probing the Universe with Multimessenger Astrophysics September 28, 2022

## ISWRS

We need to study **CMB x Galaxy** to detect the late <u>Integrated Sachs-Wolfe</u> (ISW, R.K. Sachs and A.M. Wolfe,1967) effect and its <u>nonlinear</u> counterpart, the <u>Rees Sciama</u> (RS, R.K. Sachs and A.M. Wolfe,1967) effect:

$$\frac{\Delta T_{ISWRS}}{T_0}(\hat{\mathbf{n}}) = \frac{2}{c^2} \int_{t_{ls}}^{t_0} dt \; \dot{\Phi}(\hat{\mathbf{n}}, \chi, t)$$

ISW is mainly due to the presence of **Dark Energy**.

#### RS is due to structure formation.



(R.G. Crittenden and N. Turok, 1996)

Viviana Cuozzo

# Is the RS effect detectable?

Viviana Cuozzo

### RS detection



Viviana Cuozzo

# Why in the presence of massive neutrinos?

Viviana Cuozzo

<u>Massive neutrinos</u> are responsible for the suppression of structure formation at small scales because of neutrino **free-streaming**.

The net consequence is a <u>suppression</u> of the matter power spectrum on small scales that directly **depends on**  $M_v = \sum m_v$  (Lesgourgues et al., 2008)



Viviana Cuozzo

### ISWRS in the presence of massive neutrinos

Viviana Cuozzo



[Simulated ISWRS induced temperature anisotropies for  $M_v = 0, 0.17, 0.30, 0.53 \text{ eV}$  at  $z^{21}$ ]

The presence of <u>massive neutrinos</u> induce a slow decay of the gravitational potential that generates the ISWRS effects even in absence of a background expansion.

On cosmological scales smaller than the characteristic neutrinos <u>free-streaming length</u>, neutrinos suppress the time derivative of the gravitational potential in a measure that **depends on**  $M_v = \sum m_v$ .

#### WHAT:

develop an **analytical method** to compute the cross-correlations between ISWRS and the galaxy distribution

#### WHAT:

develop an **<u>analytical method</u>** to compute the cross-correlations between ISWRS and the galaxy distribution

#### HOW:

Viviana Cuozzo

• using Takahashi + Bird2014 and Mead2020 <u>nonlinear</u> modelling of  $P_m(k)$  in CAMB code

$$C_{\ell}^{\dot{\Phi}g} = \frac{3\Omega_m H_0^2}{2(\ell+1/2)^2} \cdot \int_{z_{\min}}^{z_{\max}} \mathrm{d}z \, n(z) b(z) H(z) a(z) \Big[\partial_z \frac{P_{\delta\delta}(k,z)}{a(z)^2}\Big]$$

• validating against the 'Dark Energy and Massive Neutrino Universe' (DEMNUni) N-body simulations

#### WHY:

- produce accurate <u>modelling for future galaxy</u> <u>and CMB surveys</u>
- try to infer new constraints on **M**

## Analytical computation of the ISWRS - galaxy cross-spectrum with CAMB



Viviana Cuozzo

### Analytical results: ISWRS x Galaxy distribution



Viviana Cuozzo

# Predictability of $M_{\nu}$



Viviana Cuozzo

#### DEMNUni: CMB - galaxy cross-correlations in the presence of massive neutrinos

Nonlinear  $P_m(k)$ modelling needs to be improved

### Forecasts and outlook



- The analytical method implemented allows us to <u>model</u> future <u>CMB</u> and <u>galaxy</u> surveys
- The results here presented will be soon <u>submitted</u> (<u>Cuozzo et al., in prep.</u>)
- In the paper you will find the results even for the **ISWRS CMB-Lensing cross-correlation**
- We are going to investigate the S/N ratios of this cross-spectra in the case of  $\nu$ ACDM cosmologies
- Thanks to the availability of DEMNUni maps, it will be possible to investigate **Dynamical Dark Energy effects** on the cross-spectra

#### Viviana Cuozzo

# Thank you for your attention!

Viviana Cuozzo viviana.cuozzo@roma2.infn.it

## References:

R.K. Sachs and A.M. Wolfe, *Perturbations of a Cosmological Model and Angular Variations of the Microwave Background*, ApJ 147 (1967) 73.
M.J. Rees and D.W. Sciama, *Large-scale Density Inhomogeneities in the Universe*, Nature 217 (1968) 511.

R.G. Crittenden and N. Turok, Looking for a Cosmological Constant with the Rees-Sciama Effect, Phys. Rev. Lett. 76 (1996) 575 [astro-ph/9510072]

J. Lesgourgues, W. Valkenburg and E. Gaztañaga, *Constraining neutrino masses with the integrated-Sachs-Wolfe-galaxy correlation function*, Phys. Rev. D77(2008) 063505 [0710.5525].

S. Ferraro, E. Schaan and E. Pierpaoli, *Is the Rees-Sciama effect detectable by the next generation of cosmological experiments?*, arXiv e-prints(2022) arXiv:2205.10332 [2205.10332].

C. Carbone, M. Petkova and K. Dolag, DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos, J. Cosmology Astropart. Phys. **2016** (2016) 034 [1605.02024].

A. Lewis and A. Challinor, "CAMB: Code for Anisotropies in the Microwave Background." Astrophysics Source Code Library, record ascl:1102.026, Feb., 2011.

R. Takahashi, M. Sato, T. Nishimichi, A. Taruya and M. Oguri, *Revising the Halofit Model for the Nonlinear Matter Power Spectrum*, ApJ **761** (2012) 152 [1208.2701].

S. Bird, M. Viel and M.G. Haehnelt, Massive neutrinos and the non-linear matter power spectrum, MNRAS 420 (2012) 2551 [1109.4416].

A.J. Mead, S. Brieden, T. Tröster and C. Heymans, HMCODE-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback, MNRAS 502 (2021) 1401 [2009.01858].

The "Dark Energy and Massive Neutrino Universe" (DEMNUni) simulations (*Carbone et al., 2016*) are a set of 16 high-resolution cosmological N-body simulations with  $L = 2 b^{-1}$  Gpc,  $N_p = 2048^3$  cold dark matter particles and the same number of neutrino particles

The neutrino mass considered are:  $M\nu = 0, 0.17, 0.30, 0.53 \text{ eV}$ 

For this work, three DEMNUni map sets have been used:

- 1. <u>ISWRS maps</u> produced via **ray-tracing** from  $z_{min} = 0.02$  to  $z_{max} = 1.89$  (*Carbone et al. 2008, Carbone et al. 2016*)
- <u>CMB-Lensing maps</u> produced via ray-tracing from z<sub>min</sub> = 0.02 to z<sub>max</sub> = 1.89 (*Carbone et al. 2008, Carbone et al. 2016*)
- 3. <u>Galaxy maps</u> produced from the **projection of 3D lightcone shells**, that go from  $z_{min} = 0.02$  to  $z_{max} = 1.89$ , onto 2D spherical maps (*Calabrese et al. 2015, Calabrese et al. in prep.*)

Viviana Cuozzo

### ISWRS - Galaxy cross-spectrum



Viviana Cuozzo

## Testing different b(z) functions (Takahashi+Bird2014 modelling)



Viviana Cuozzo

# Testing different b(z) functions (Mead2020 modelling)



Viviana Cuozzo

# Planck2018 constraints on neutrino mass and w<sub>0</sub>-w<sub>a</sub>



| Parameter                                      | Planck+SNe+BAO          | Planck+BAO/RSD+WI         |
|------------------------------------------------|-------------------------|---------------------------|
| w <sub>0</sub>                                 | $-0.961 \pm 0.077$      | $-0.76 \pm 0.20$          |
| <i>W</i> <sub>a</sub>                          | $-0.28^{+0.31}_{-0.27}$ | $-0.72^{+0.62}_{-0.54}$   |
| $H_0$ [ km s <sup>-1</sup> Mpc <sup>-1</sup> ] | $68.34 \pm 0.83$        | $66.3 \pm 1.8$            |
| <i>σ</i> <sub>8</sub>                          | $0.821 \pm 0.011$       | $0.800^{+0.015}_{-0.017}$ |
| S <sub>8</sub>                                 | $0.829 \pm 0.011$       | $0.832 \pm 0.013$         |



#### Viviana Cuozzo

## Takahashi+Bird2014 VS Mead2020





Viviana Cuozzo

# Spectra from DEMNUni maps



Viviana Cuozzo

## Analytical results: ISWRS - CMB Lensing cross-correlation



Viviana Cuozzo

## Modelling for different n(z) with Takahashi+Bird2014



DEMNUni: CMB - galaxy cross-correlations in the presence of massive neutrinos

Viviana Cuozzo

## Modelling for different n(z) with Mead2020



Viviana Cuozzo



Credit: Cuozzo et al. in prep

Viviana Cuozzo