

Searching for Gravitational-Waves/Gamma-Ray-Bursts associations in LIGO/Virgo & Fermi-GBM data

PUMA2022 26th - 30th of September

Marion Pillas, PhD student IJCLab Université Paris-Saclay <u>marion.pillas@ijclab.in2p3.fr</u>

Tito Dal Canton, CNRS Researcher, IJCLab, Université Paris Saclay

Cosmin Stachie, Brandon Piotrzkowski, Fergus Hayes, Eric Burns, Josh Woods, Nelson Christensen, others ...

UNIVERSITE PARIS-SACLAY

1. Introduction

- RAVEN, PyGRB & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results

3. Conclusion

Reminder: **GRB:** Gamma-Ray-burst, **BNS:** Binary Neutron Star Mergers, **CBC:** Compact Binary Coalescence, **GWB:** Gravitational Wave Burst, LLR: Log-Likehood Ratio, FAR: False Alarm Rate

Introduction **Overview of joint GW-GRB searches**

RAVEN

Rapid VOEvent Coincidence Monitor

Low-latency search (seconds) *Time & Sky proximity* between candidates

All these searches have computational or statistical limitations that prevent us from looking at a large number of weak candidates.

References :

- https://arxiv.org/pdf/2111.03608.pdf

• Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b:

• Searching for Sub-threshold Gravitational Wave Candidates with RAVEN: Piotrzkowski, Brandon ; LIGO Team • X-Pipeline: An analysis package for autonomous gravitational-wave burst searches: <u>https://arxiv.org/abs/0908.3665</u>

1. Introduction

• RAVEN, PyGRB ... & all the searches for joint associations

2. A deeper method to search for joint detections

- Motivations & Method
- Results

3. Conclusion

A deeper method to search for joint detections **Motivations & Method**

Currently : only one GW-GRB joint detection (GW170817/GRB170817A) Why more are needed ? Answer some fundamental questions e.g are the properties of GW170817 common to all neutron star mergers or represented an exceptional case ? What is the fraction of short and long GRBs associated to BNS mergers ?

What we want to do : look at many weak candidates in the hope of finding more joint detections.

Identify pairs of GW-GBM triggers which could plausibly originate from a common astrophysical event, rank the pairs thanks to a ranking statistics, and assign a statistical significance (False Alarm Rate [s]) to them.

$$\Lambda = \frac{P(D_L, D_G | H_C)}{P(D_L, D_G | H_{NN} \setminus H_{SN} \setminus H_{NS} \setminus$$

 H_c : both GW & GBM data sets contain signal & common source H_{NN} : noise in both channels

 H_{SN} : signal in GW channel and noise in GBM data

 H_{NS} : the inverse

 H_{SS} : signals in both channels but unrelated sources

References:

- with Gamma-Ray Events in Fermi-GBM
- Greg Ashton et. Al. : Coincident Detection Significance in Multimessenger Astronomy

- 1. Introduction
 - RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results
- 3. Conclusion

A deeper method to search for joint detections **Motivations & Method** $I_{\Omega}^{EA} = 4\pi f_{vis}$ $P(\Omega \mid GW)P(\Omega \mid GBM)d\Omega$ $I_{\Delta t}I_{\Omega}$ with f_{i} $d\Omega$ $1 + Q_L + Q_G + Q_L Q_G$ In: Sky overlap $\log_{10} BF$ **Bayes factor Coherent VS** Incoherent signal (from 3.0 **<u>Q</u>_I: GW Bayes Factor:** 2.5 1.0 log₁₀(LLR) . 0[.] 5 0.8 0.6 1.5 0.000 0.4 1.000 1.0 1.500 0.2 -0.75 -0.50 -0.25 0.000.25 0.50 -1.00log₁₀(Duration [s]) Q_G: GBM pseudo Bayes Factor -40 -20 20 40 60 -60Δt $Q_G < 0 \rightarrow signal-like$

I_{At}: Time overlap

- 1. Introduction
 - RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results
- 3. Conclusion

A deeper method to search for joint detections **Motivations & Method** $I_{\Omega}^{EA} = 4\pi f_{vis}$ $P(\Omega \mid GW)P(\Omega \mid GBM)d\Omega$ $I_{\Delta t}I_{\Omega}$ $d\Omega$ with $1 + Q_L + Q_G + Q_L Q_G$ Io: Sky overlap $\log_{10} BF$ **Bayes factor Coherent VS** Incoherent signal (from 3.0 Bayestar) Q_I : GW Bayes Factor: 2.5 1.0 log₁₀(LLR) . 0[.] 5 0.8 0.6 1.5 0.000 0.4 1.000 1.0 1.500 0.2 -0.75 -0.50 -0.25 0.000.25 0.50 -1.00log₁₀(Duration [s]) 0.0 Q_G: GBM pseudo Bayes Factor -40 -20 20 40 60 -60Δt $Q_G < 0 \rightarrow signal-like$

I_{At}: Time overlap

- 1. Introduction
 - RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results
- 3. Conclusion

A deeper method to search for joint detections **Motivations & Method** $I_{\Omega}^{EA} = 4\pi f_{vis}$ $P(\Omega \mid GW)P(\Omega \mid GBM)d\Omega$ $\Delta t^{I}\Omega$ $d\Omega$ with $1 + Q_L + Q_G + Q_L Q_G$ Io: Sky overlap $\log_{10} BF$ **Bayes factor Coherent VS** Incoherent signal (from 3.0 Bayestar) Q_I : GW Bayes Factor: 2.5 1.0 log₁₀(LLR) . 0[.] 5 0.8 0.6 1.5 /∆t 0.000 0.4 1.000 1.0 1.500 0.2 -0.75 -0.50 -0.25 0.00 0.25 0.50 -1.00log₁₀(Duration [s]) 0.0 **<u>Q</u>_C: GBM pseudo Bayes Factor** -40 -20 20 40 -60 0 60 Δt $Q_G < 0 \rightarrow signal-like$

$I_{\Delta t}$: Time overlap

- 1. Introduction
 - RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results
- 3. Conclusion

Motivations & Method

Bayes factor Coherent VS Incoherent signal (from Bayestar)

 Q_I : GW Bayes Factor:

$I_{\Delta t}$: Time overlap

1. Introduction

- RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results
- 3. Conclusion

A deeper method to search for joint detections **Motivations & Method** Foreground associations

🔶 • • • • • • • • • • • • •

Background computation needed to assign a FAR to each foreground pair. In this analysis STEP = 70s

•*Time*

Time

1. Introduction

- RAVEN, PyGRB ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - **Results**
- 3. Conclusion

A deeper method to search for joint detections **Results:**

- Presentation the results using the PyCBC triggers coming from the 2^{nd} Gravitational-Waves Observing Run which allowed us to check the validity of our method against GW170817+GRB170817A. • Test of different configurations to increase the significance of this joint detection.

Configurations :

- Separating the associations by **GBM** duration.
- Applying a preliminary cut of the false alarm rate (FAR > 2 /day in:

DEFINITION:

False Alarm Rate: How often do we expect noise to produce a trigger with the same ranking statistic as the candidate in question?

	Config 1.	Config 2	Config 3.
GBM spectral values and	Yes	No	No
e GW triggers based on the spired from GWTC-3)	No	No	Yes
			Ι

Results presented here

1. Introduction

- RAVEN, PyGRB

 & all the
 searches for
 joint
 associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results

3. Conclusion

A deeper method to search for joint detections Results : Foreground most significant associations

	Rank	GW merger time	GBM delay	GBM duration	GBM Spectrum	GBM LLR	GBM BF	GW BF	Sky term	Assoc rank	IFAI
	1 2 3	1187008882.44 1187008882.44 1187008882.44	2.02 s. 2.72 s. 1.859 s.	0.512 s. 4.096 s. 0.064 s.	1 2 0	$72.514 \\ 15.381 \\ 14.328$	-6.263 -0.143 -0.084	-11.974 -11.974 -11.974	2.846 3.330 1.052	2.774 2.611 0.336	>134 >134 2.4
L											

* Duration, delay & time shift : in seconds

1. Introduction

- RAVEN, PyGRB

 & all the
 searches for
 joint
 associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results

3. Conclusion

A deeper method to search for joint detections Results : Foreground most significant associations

Rank	GW merger time	GBM delay	GBM duration	GBM Spectrum	GBM LLR	GBM BF	GW BF	Sky term	Assoc rank	IFA
1	1187008882.44	2.02 s.	0.512 s.	1	72.514	-6.263	-11.974	2.846	2.774	>13
2	1187008882.44	2.72 s.	4.096 s.	2	15.381	-0.143	-11.974	3.330	2.611	>134
3	1187008882.44	1.859 s.	0.064 s.	0	14.328	-0.084	-11.974	1.052	0.336	2.

* Duration, delay & time shift : in seconds

1. Introduction

- RAVEN, PyGRB
 ... & all the searches for joint associations
- 2. A deeper method to search for joint detections
 - Motivations & Method
 - Results

3. Conclusion

Conclusion Conclusion

- We were able to analyze a large amount of triggers (~800000 GBM triggers & ~500 GW triggers) and find GW170817 with a high significance!
 When we have to deal with a lot of poise on the GW side. GW170817/GPB170817/
- When we have to deal with a lot of noise on the GW side, GW170817/GRB170817A is not highly significant (not presented here).
- We found a configuration that works (number 3).

Next Steps

- The GW Bayes Factor should be improved : it doesn't discriminate properly between noise and signal.
- Apply this method applied on the 3rd Gravitational-Waves Observing Run (O3) data.
- Same for future observing runs.

Thank you for your attention !

Backup

Cumulative rate as a function of the inverse false alarm rate (IFAR [yr]) for foreground (in solid line) with configuration 1. The foregrounds represent associations between Fermi-GBM candidates and LIGO triggers with no time shift.

Cumulative rate as a function of the inverse false alarm rate (IFAR [yr]) for foreground (in solid line) with configuration 2: no separation in spectral value and duration. The foregrounds represent associations between Fermi-GBM candidates and LIGO triggers with no time shift.

Results : Foreground most significant associations

R	ank	GW merger time	GBM delay	GBM duration	GBM Spectrum	GBM LLR	GBM BF	GW BF	Sky term	Assoc rank	IFAR [yr]
	1	1187008882.44	2.02 s.	0.512 s.	1	72.514	-6.263	-11.974	2.846	2.774	> 1348.378
	2	1187008882.44	2.72 s.	4.096 s.	2	15.381	-0.143	-11.974	3.330	2.611	> 1348.378
	3	1187008882.44	$1.859 \mathrm{s.}$	0.064 s.	0	14.328	-0.084	-11.974	1.052	0.336	2.474

GBM skymap

