International conference PUMA22 Probing the Universe with Multimessenger Astrophysics

Sep. 26 – 30, 2022 Sestri Levante

Testing the cosmological principle with the CMASS galaxy sample

Chan-Gyung Park

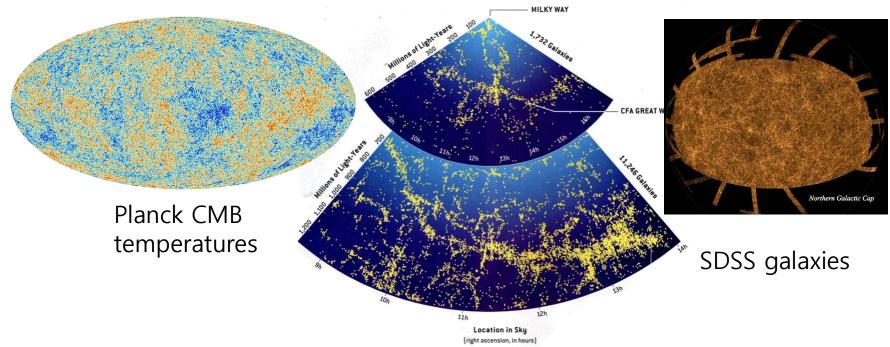
(Division of Science Education, Jeonbuk National University)

Yigon Kim (KNU), Hyerim Noh (KASI), Jai-chan Hwang (IBS)

A&A 660, A139 (2022) https://doi.org/10.1051/0004-6361/202141909 © ESO 2022

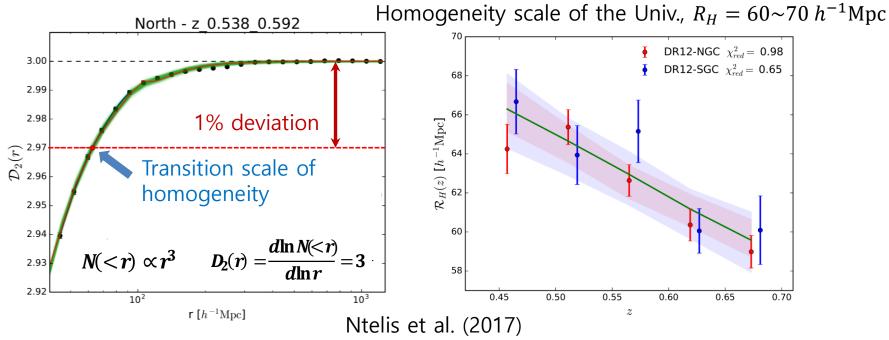
CMASS galaxy sample and the ontological status of the cosmological principle

Yigon Kim¹, Chan-Gyung Park², Hyerim Noh³, and Jai-chan Hwang^{1,4}


- ¹ Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- ² Division of Science Education and Institute of Science Education, Jeonbuk National University, Jeonju 54896, Republic of Korea e-mail: park.chan.gyung@gmail.com
- ³ Theoretical Astrophysics Group, Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea
- ⁴ Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea

arXiv:2112.04134

Introduction

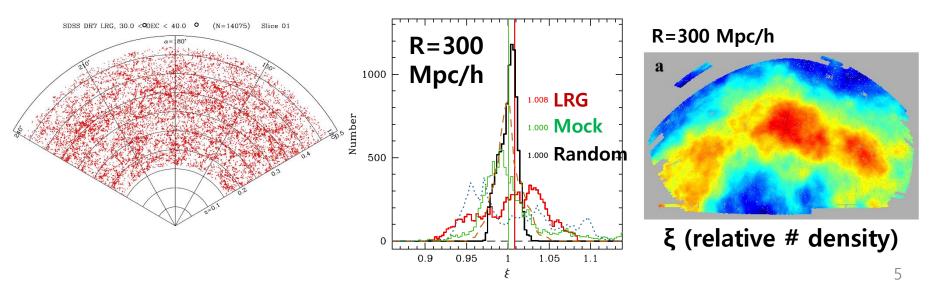

Cosmological Principle (CP)

- The universe is homogeneous and isotropic on large scales.
- The most fundamental assumption in modern cosmology.
- The CMB strongly supports isotropy around us.
- Recent LSS observations provide relevant data for testing the CP.

Previous studies on homogeneity test

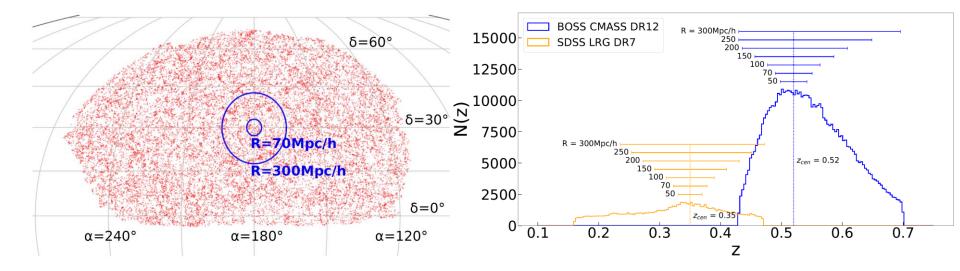
- Hogg et al. (2005) SDSS DR7 LRG (0.2 < z < 0.4)
 Scrimgeour et al. (2012) WiggleZ Dark Energy Survey (0.1 < z < 0.9)
 Ntelis et al. (2017) BOSS DR12 CMASS (0.4 < z < 0.7)
 - Counting galaxies within a sphere \rightarrow Averaged $N(\langle R \rangle)$ or $D_2(R)$
 - → Galaxies are homogeneously distributed on $R > 70 h^{-1}$ Mpc.

MNRAS **469**, 1924–1931 (2017) Advance Access publication 2017 April 25



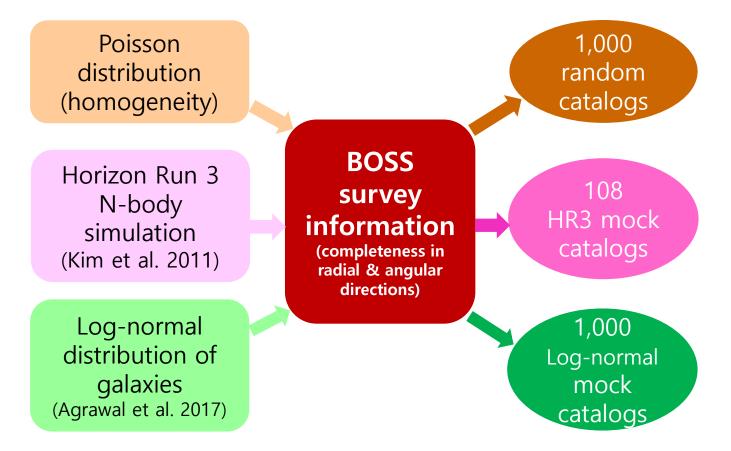
The cosmological principle is not in the sky

Chan-Gyung Park,¹^{*} Hwasu Hyun,² Hyerim Noh³ and Jai-chan Hwang²^{*}


¹Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju, Korea ²Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, Korea ³Center for Large Telescope, Korea Astronomy and Space Science Institute, Daejeon, Korea

- SDSS DR7 Luminous Red Galaxies (LRG) (0.2 < z < 0.4)
- Average and fluctuations of galaxy number counts are used for homogeneity test.
- Even at scales up to 300 Mpc/h, the homogeneity is not established.

Data


- Baryon Oscillation Spectroscopic Survey CMASS galaxy sample
 - Massive galaxies at 0.43 < z < 0.7 ($z_{cen} = 0.52$). $N \approx 930,000$. (North Galactic Cap galaxies with $N \approx 570,000$ used in this work)
 - Farther away and much more numerous than SDSS LRG ($N \approx 10^5$) → Suitable for testing homogeneity of the matter distribution.

Random and mock catalogs

- Random catalogs are used as a criterion for homogeneity.

- Mock catalogs are used to check consistency with the current paradigm of cosmology.

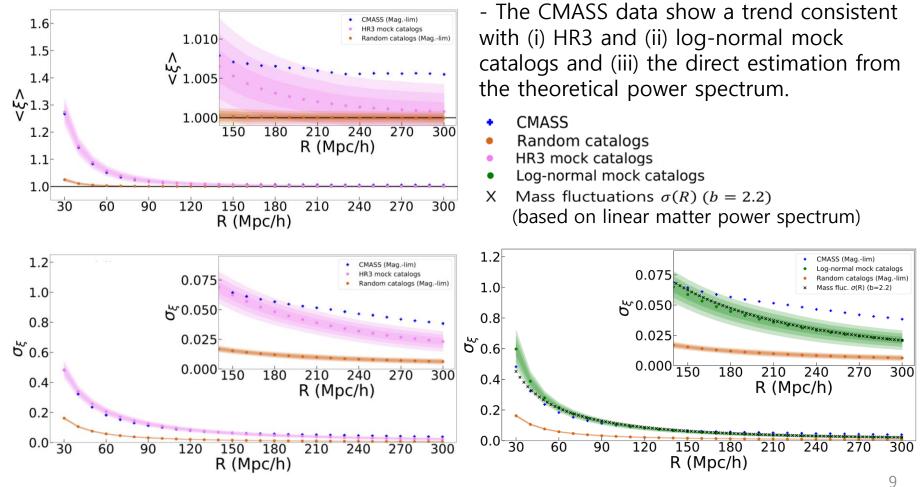
Method (counting galaxies within a truncated cone)

- Count the number of galaxies in a truncated cone that is circumscribing a sphere of radius R centered on galaxies near the central redshift $z_{cen} = 0.52$ (7 h^{-1} Mpc thickness).
- Define a statistical estimator ξ .
 - Unaffected by the radial selection effect that varies with redshift.
 - $\xi \rightarrow 1$ for homogeneous distribution.
- Measure ξ while increasing the radius R.
 - Estimate average $\langle \xi \rangle$ & std σ_{ξ} , and compare with random & mock catalogs.

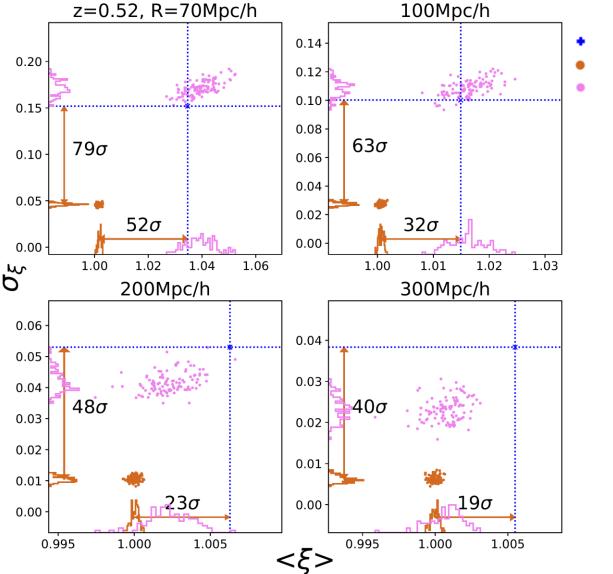
number density within a truncated cone number density within the whole slice of 2*R* thickness

 $R = d_c \sin \theta_R$

2 R

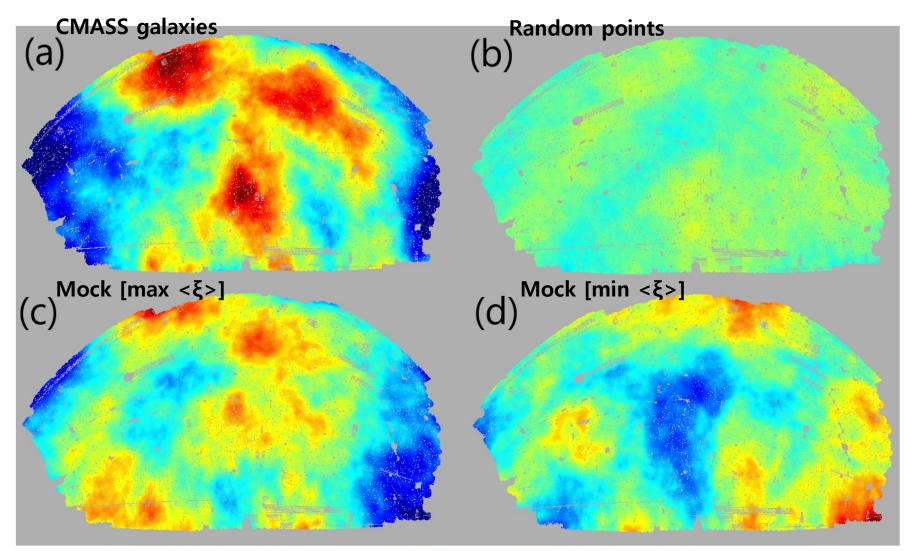

 d_c

Observer


Results

Variation of $\langle \xi \rangle$ and σ_{ξ} on scales R=30 - 300 h^{-1} Mpc

- Up to radius R=300 Mpc, $\langle \xi \rangle$ and σ_{ξ} in the CMASS data deviates significantly from the trend in random data.

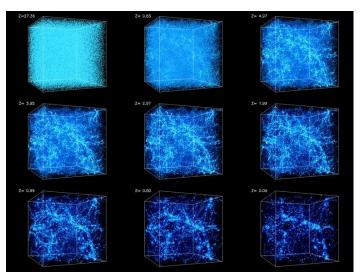


CMASS vs Random & HR3 mock catalogs ($\langle \xi \rangle \otimes \sigma_{\xi}$)

- CMASS
- Random catalogs
- HR3 mock catalogs

ξ-distribution in the CMASS survey region (R=300 h^{-1} Mpc)

0.900


Discussion

- The observed galaxy distribution (light) and the simulated dark matter distribution (matter) are quite inhomogeneous even on a large scale.
- Does the inhomogeneous matter distribution contradict the CP? NO!

- CP is applied to the metric. Theoretically, the Universe begins with a homogeneous & isotropic background with minute metric fluctuations.

(The metric fluctuations, initially at the level of $\delta \Phi/c^2 \approx 10^{-5}$, still remains quite low at present, $\delta \Phi/c^2 < 10^{-4}$).

• Large matter density fluctuations are possible to exist at sub-horizon scales.

- In Einstein's gravity, the matter density is related to the curvature, which is given as the second derivative of the metric.

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik}$$
(curvature) (matter density)
$$\implies a^{-2}\Delta\delta\Phi = 4\pi G\delta\rho$$

Thank You