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The Kilonova

Thermal emission powered by decay of r-process nuclei

Reviews on the topic: Metzger Living Rev., Fernández & Metzger (2015)

Scenario: NSNS and NSBH mergers
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Model characterization

Diffusive semi-analytic formula + thin layers correction

Outflow hypothesis:

▶ Homologous expansion

▶ Optical thickness

▶ Radiation domination

▶ Quick decay energy re-processing

Model variables: Mej, vej, κ

Starting point:
First two frequency-integrated moments
of RT equation in comoving frame,
O(v/c) ...

Derivation: Wollaeger et al. (2017)

Anisotropic multi-component framework:

Perego et al. (2017)
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Model characterization
Photosphere computation → Two contributions to total luminosity: L(t) = Lthick(t) + Lthin(t)

Full model description: Camilletti et al. (2022), Ricigliano et al. (in preparation)
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Model characterization
Photosphere computation → Two contributions to total luminosity: L(t) = Lthick(t) + Lthin(t)

Lthick(t) =
Mthick(t)

Mej
A0

∞∑
n=1

(−1)n+1nπϕn(t)

with ϕn(t) obtained from solving:

ϕ′
n(t) +

(
t

B0

)
(n2π2)ϕn(t) = C0

(−1)n+1

nπ
t1−α

→ convergence for ∼ 500 basis components

Full model description: Camilletti et al. (2022), Ricigliano et al. (in preparation)
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Model characterization

Photosphere computation → Two contributions to total luminosity: L(t) = Lthick(t) + Lthin(t)

Lthin(t) =
∑

i :r>Rph

ϵth,i (t)ϵ̇r(t)dMi

ϵ̇r(t) radioactive heating rate

ϵth(ρ) thermalization efficiency
Barnes et al. (2016)

Full model description: Camilletti et al. (2022), Ricigliano et al. (in preparation)
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Model ingredients: heating rates and opacities

• Nuclear reaction network SkyNet calculations
Perego et al. (2022), Wu et al. (2022)
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→ Heating fit formula: ϵ̇r(t) = At−α

with A, α = f (Ye , s, τ)

• Systematic atomic structure HULLAC calculations
Tanaka et al. (2020)

→ Planck mean opacities: κ = κ(Ye)
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GW190425: synthetic magnitudes

GRHD BNS simulations
Camilletti et al. (2022)

Dynamic ejecta:

▶ anisotropic

▶ Mdyn ∼ 10−6 − 10−4 M⊙

▶ vdyn ∼ 0.2− 0.3 c

▶ Ye,dyn ∼ 0.10− 0.25

Disk wind:

▶ isotropic

▶ Mwind ∼ 10−4−10−2 M⊙

▶ vwind ∼ 0.06 c

▶ κwind ∼ 5 cm2g−1

Distance: 130 Mpc
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Overview

Model achievements:

▶ Accuracy improved from radiative
transfer

▶ Sensitivity to initial ejecta
thermodynamic conditions

Code advantages:

▶ Runtime < 1 s

▶ Open to non-trivial ejecta profiles

Applications:

▶ Bayesian statistical analysis

▶ Event target (e.g. GW170817)
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