Semi-analytic modeling of Kilonovae PUMA22, Sestri Levante

Giacomo Ricigliano

September 28, 2022

Giacomo Ricigliano

э

イロン イヨン イヨン イヨン

The Kilonova

Thermal emission powered by decay of r-process nuclei

Reviews on the topic: Metzger Living Rev., Fernández & Metzger (2015)

Giacomo Ricigliano

э

メロト メタト メヨト メヨト

The Kilonova

Thermal emission powered by decay of r-process nuclei

Scenario: NSNS and NSBH mergers on-axis GRE (unobserved) $Y_e = \frac{N_p}{N_p + N_n}$ off-axis GRB $\theta_{obs} \sim 3-32^{\circ}$ Observe ~ day r-nuclei ea. Xe. Aa Kilonova t~week Kilonova disk Winds heavy Black ho

Reviews on the topic: Metzger Living Rev., Fernández & Metzger (2015)

Giacomo Ricigliano

э

イロト イヨト イヨト

Diffusive semi-analytic formula + thin layers correction

Outflow hypothesis:

- Homologous expansion
- Optical thickness
- Radiation domination
- Quick decay energy re-processing

Model variables: $M_{\rm ej}$, $v_{\rm ej}$, κ

Starting point:

First two frequency-integrated moments of RT equation in comoving frame, O(v/c) ...

Derivation: Wollaeger et al. (2017)

Anisotropic multi-component framework:

Photosphere computation \rightarrow Two contributions to total luminosity: $L(t) = L_{\text{thic}}$

Full model description: Camilletti et al. (2022), Ricigliano et al. (in preparation)

Giacomo Ricigliano

э

メロト メタト メヨト メヨト

Photosphere computation \rightarrow Two contributions to total luminosity: $L(t) = L_{\text{thick}}(t) + L_{\text{thin}}(t)$

$$L_{
m thick}(t) = rac{M_{
m thick}(t)}{M_{
m ej}} A_0 \sum_{n=1}^\infty (-1)^{n+1} n \pi \phi_n(t)$$

with $\phi_n(t)$ obtained from solving:

$$\phi_n'(t) + \left(rac{t}{B_0}
ight)(n^2\pi^2)\phi_n(t) = C_0rac{(-1)^{n+1}}{n\pi}t^{1-lpha}$$

 \rightarrow convergence for \sim 500 basis components

Full model description: Camilletti et al. (2022), Ricigliano et al. (in preparation)

э

メロト メタト メヨト メヨト

Photosphere computation \rightarrow Two contributions to total luminosity: $L(t) = L_{\text{thick}}(t) + L_{\text{thin}}(t)$

Giacomo Ricigliano

Model ingredients: heating rates and opacities

Image: A matched black

< E

э

The physics behind kilonovae A semi-analytic KN model Additional ingredients Model application Conclusions

Model ingredients: heating rates and opacities

• Nuclear reaction network SkyNet calculations Perego et al. (2022), Wu et al. (2022)

• Systematic atomic structure HULLAC calculations Tanaka et al. (2020)

Ye	X(La)	X(La+Ac)	$ \kappa \ { m cm}^2 { m g}^{-1} $
0.10	$7.1 imes 10^{-2}$	$1.7 imes 10^{-1}$	19.5*
0.15	$2.6 imes 10^{-1}$	2.6×10^{-1}	32.2
0.20	$1.1 imes 10^{-1}$	$1.1 imes 10^{-1}$	22.3
0.25	$5.5 imes 10^{-3}$	5.5×10^{-3}	5.60
0.30	3.4×10^{-7}	3.4×10^{-7}	5.36
0.35	0.0	0.0	3.30
0.40	0.0	0.0	0.96
0.10-0.20	$2.1 imes 10^{-1}$	$2.3 imes 10^{-1}$	30.7
0.20-0.30	$4.8 imes 10^{-2}$	$4.8 imes 10^{-2}$	15.4
0.30 - 0.40	0.0	0.0	4.68

 \rightarrow Planck mean opacities:

$$\kappa = \kappa(Y_e)$$

< E

э

- 王

GW190425: synthetic magnitudes

GRHD BNS simulations Camilletti et al. (2022)

Dynamic ejecta:

- anisotropic
- $\blacktriangleright~M_{\rm dyn} \sim 10^{-6} 10^{-4}~M_{\odot}$
- \blacktriangleright $v_{\rm dyn} \sim 0.2 0.3~c$
- $\blacktriangleright \ Y_{\rm e,dyn} \sim 0.10 0.25$

Disk wind:

- isotropic
- ▶ $M_{\rm wind} \sim 10^{-4} 10^{-2} M_{\odot}$
- \blacktriangleright $v_{\rm wind} \sim 0.06 c$
- $\blacktriangleright \ \kappa_{\rm wind} \sim 5 \ {\rm cm}^2 {\rm g}^{-1}$

Distance: 130 Mpc

Camilletti et al. (2022)

Image: A match the second s

(4) ∃ ⇒

э

Overview

Model achievements:

- Accuracy improved from radiative transfer
- Sensitivity to initial ejecta thermodynamic conditions

Code advantages:

- Runtime < 1 s</p>
- Open to non-trivial ejecta profiles

Applications:

- Bayesian statistical analysis
- Event target (e.g. GW170817)

→ Ξ →

э

・ロト ・日 ・ ・ ヨト