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Nuclear Physics ingredients of Multimessenger Astrophysics

Nuclear physics

input
‘ Observations
Stellar (GW, e.m.
modelling radiations,

neutrinos)

Some review papers:

Annu. Rev. Nucl. Part. Sci. 67 (2017) 253
Prog. Part. Nucl. Phys. 86 (2016) 86
Prog. Part. Nucl. Phys. 66 (2011) 346

Nuclear physics ingredients: cross sections to determine the reaction rates (in particular
for neutron capture reactions), beta-decays, fission rates

Nuclear physics ingredients help access

- the nuclear equation of state, necessary for the description of supernovae
explosions, neutron star (NS) structure and dynamical properties, and the dynamics
of binary NS mergers.

- r-process yields (determine the heating term of the light curve)

- opacities (determines the optical properties of the expanding plasma) to understand
the blast followup.



LNS activities involved in this tasks

ASFIN: nuclear reactions of relevance for s-process and r-process nucleosynthesis by means of indirect
approaches such as THM and ANC, future activity to tackle Bn emitters

CHIRONE: nuclear reactions to constraint nuclear equation of state and symmetry energy at high density
n-ToF: n-induced reactions to tackle the contribution of fission recycling process to r-process

PANDORA: innovative magnetic plasma trap, especially to study [-decays and opacities under
astrophysical conditions



ASFIN and the Trojan Horse Method

Basic principle: astrophysically relevant two-body ¢ from quasi- free contribution of an appropriate three-body reaction
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Recent Review paper:
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Constraining r-process abundances

The r-process pattern is extracted from the solar system abundances by subtracting the s-process (and p-process) contributions
through models

s-process nucleosynthesis plays a crucial to constrain the r-process. At LNS, an intense activity on the s-process is ongoing
focusing on:

1. Investigating the neutron sources of the s-process: 13C(a,n)®0 and 22Ne(a,n)?>Mg

2. Constraining astrophysical models of s-process by studying production and destruction of probe nuclei (mainly 1°F)
Fluorine is very sensitive on the stellar physical conditions, so its abundance allows us to see “inside” the s-process site
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Nuclear physics input: n-capture reactions

Little or no data on n-capture cross 100 : : — —
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Important neutron capture rates in neutron star
mergers

- Along the hot r-process path no sensitivity on
cross sections owing to (n,y)<(y,n) equilibrium

- Enhanced sensitivity for neutron star mergers
since neutrons are available when (y,n) reactions
become negligible
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The THM for n+radioactive nucleus reactions

RIB experiments: mostly neutron but also p,a induced reactions to tackle the nucleosynthesis beyond Fe
T>108K = Ey~ 100 keVs-MeVs < E,y 2 10°barn<o <103 barn

Experimental Issues:

- low beam intensities (several o.d.m. lower than for
stable beams)

- beam energies usually significantly larger than those
needed for astrophysical studies

- changing beam energies in small steps to study the
excitation function is often impractical.

- n-targets still under development, low density

THM

- Higher beam energies complying with available RIB facilities
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- Asingle beam energy to study the excitation function = intercluster motion used to

cover the astrophysical energy region.

- Use of d-targets (CD,) as virtual n-targets




The THM for n+radioactive nucleus reactions

Benchmarks (stable nuclei or “almost stable”):
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Proton Number (2)

Nuclear physics input: f-delayed n-emission

A7 ‘_ N S (neutron separation energy) < Qg (Q-value f-decay)
' A7 41 “Delayed”: emission with -decay half-life of the precursor nucleus AZ
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Nuclear physics input: f-delayed n-emission

T T - ~ 1 PRC83,045809 (2011)
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POLYFEMO @ LNS to study [f-delayed n-emission
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FRIBs: in-flight fragment

Cocktail beams
—> Possibility to measure many Bn
emitters at the same time.

Candidate nuclei to test the approach:
®6Co (T1/, ~ 0.2 s) and 72Ni (Ty, ~ 1.6 5)

Journal of Physics: Conf. Series 1014 (2018) 012016
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n_TOF: Fission Recycling

In explosive scenarios (supernovae and
neutron star mergers ) the fission products
of the heavier elements up to A~250, can be

seed for additional r-processing.

N Colonna, et al., The fission experimental programme at the
CERN n_TOF facility: status and perspectives, The European
Physical Journal A 56 (2), 1-49, 2020
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This Fission Recycling process populates the
intermediate mass region, with modification of

the A~130 r-process abundance peak

FR explains the abundance
observed in the solar sistem, in
particular in the lanthanides

region.




Cross section measurements of
neutron induced fission reactions

n_TOF
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LNS-nTOF team: Fission measurements
using silicon detectors

0.01 0.1 1 10 En[ev] 100

Si detectors y.p

10-5 L

* this work

6|
10 SAMMY fit

25U(n,f) cross section: thermal to 170 keV

107

Silicon detectors 5x5 cm?, 200pum
M Mastromarco, S Amaducci et al., The European Physical Journal A 58 (8), 1-13, 2022

S Amaducci, L Cosentino et al., The European Physical Journal A 55 (7), 1-19, 2019

Measurements by LNS group has led to improvements in 235U
standard cross section (used as reference for all fission measurements)

High energy resolution -> To extend the Resolved Resonance Regions

Wide energy range -> From thermal to tens MeV (with suitable configurations possible to reach
even up to hundreds MeV)

High reliability and high resistance to radiation damage

Modular design -> High versatility in detector geometry (including annular) and signal readout



ASY-EOS: a first constraint on high-density symmetry energy

neutron star

X-ray observations
Zhang & Li

EPJA 55:39 (2019)
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Bayesian inference to combine data from astrophysical

observations of neutron stars and from heavy-ion collisions of gold
nuclei at relativistic energies with microscopic nuclear theory
calculations to improve our understanding of dense matter.

Bayesian analysis
GW170817 and
radii of QLMXB
Xie & Li
arXiv:1907.10741
R=10.8-11.9 km
Esym (290) =
39+12-8 MeV

W.G. Lynch, M.B. Zhang, arXIv:2106.10119
PREX, PRL 126, 172502 (2021)




Combining HIC and astrophysical results in the same Bayesian analysis to constrain neutron matter

EOS Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions
S. Huth et al. https://www.nature.com/articles/s41586-022-04750-w

« » = FOPI+ASY-EOS+AGS - « Astro » = GW, NICER (pulsar X-ray hot spots)
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where sensitivity is highest

(S

Aysuap AYIaRaAOI

L
—_

similar observations with NICER data

low densities, HICs have clear impact on total :)I/' R 10
posteriors ®

EOS at higher densities (>2p,) mostly ; o |
determined by astrophysical observations 2 I

Conclusion

Aysuap AYIqeqoig

L
—

advancing HIC experiments to higher densities
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the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses,

shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition
Explorer mission



Advancing to higher densities (towards 2p,)

Higher incident energies
Li, Bao-An, NPA 708, 365 (2002)

A new experiment (ASY-EOS Il) inside the NUSTAR/R3B
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PANDORA: ECR plasma trap for interdisciplinary

Plasmas for
Astrophysics
Nuclear

studies in nuclear physics and nuclear astrophysics Obvervation and

« Electron dens: 1012 — 1014 ¢cm~3
* Electron Energy: ~ eV — 100 keV
« londens: 1011 ¢m3

Radiation for
Archaeometry

« PANDORA concept: compact plasma trap to magnetically confine ions of
radioisotopes in a microwave-sustained ECR plasma

« Goals: nuclear 3-decay and spectroscopic measurements in a plasma
resembling astrophysical conditions (temperature, ion charge state
distribution), BNS ejecta opacity (Pidatella’s talk)

* Plasma diagnostics system: RF probes, optical and X-ray spectrometers
allowing direct correlation of experimental measurements to plasma

density and temperature

« Assembling multi-diagnostic setup: simultaneously monitor plasma
parameters and carry measurements under stable conditions

PHYSICS OF INTEREST FOR MMA
AND NUCLEAR ASTROPHYSICS

Mascali,D. et al, Eur. Phys. J. A (2017) 53: 145
Mascali D. et al, Universe 8 (2), 80 (2022)

s-process nucleosynthesis + [3-
decay branching

r-process cosmic sites

Nuclear reaction rates in stars
Compact binary object
spectroscopy (kilonova
transient): to characterize
composition and to identify GW
events
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Summary

1. Increasingly accurate observations call for more accurate nuclear data on the r-process
—> Constraining the r-process through a better understanding of the s-process:
a. study of the neutron sources
b. study of production/destruction of critical elements
—>Study of nuclear reactions involved in the r-process
a. indirect study of n+RIB reactions
b. Investigation of the beta-delayed neutron emission
2. n-induced reactions to tackle the contribution of fission recycling process to r-process

3. nuclear reactions to constraint nuclear equation of state and symmetry energy at high density = NS radius

4. innovative magnetic plasma trap, especially to study B-decays and opacities under astrophysical conditions
(plasma made up of lanthanides )
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