International conference PUMA22 Probing the Universe with Multimessenger Astrophysics Sestri Levante 26-30 September 2022

Multimessenger astrophysics at LNS from a nuclear physics

point of view

Aurora Tumino

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Nuclear Physics ingredients of Multimessenger Astrophysics

Nuclear physics ingredients: cross sections to determine the reaction rates (in particular for neutron capture reactions), beta-decays, fission rates

Nuclear physics ingredients help access

- the nuclear equation of state, necessary for the description of supernovae explosions, neutron star (NS) structure and dynamical properties, and the dynamics of binary NS mergers.
- r-process yields (determine the heating term of the light curve)

Some review papers:

Annu. Rev. Nucl. Part. Sci. 67 (2017) 253 Prog. Part. Nucl. Phys. 86 (2016) 86 Prog. Part. Nucl. Phys. 66 (2011) 346 opacities (determines the optical properties of the expanding plasma) to understand the blast followup.

LNS activities involved in this tasks

ASFIN: nuclear reactions of relevance for s-process and r-process nucleosynthesis by means of indirect approaches such as THM and ANC, future activity to tackle ßn emitters

CHIRONE: nuclear reactions to constraint nuclear equation of state and symmetry energy at high density

n-ToF: n-induced reactions to tackle the contribution of fission recycling process to r-process

PANDORA: innovative magnetic plasma trap, especially to study ß-decays and opacities under astrophysical conditions

ASFIN and the Trojan Horse Method

Basic principle: astrophysically relevant two-body σ from quasi- free contribution of an appropriate three-body reaction

Constraining r-process abundances

The r-process pattern is extracted from the solar system abundances by subtracting the s-process (and p-process) contributions through models

s-process nucleosynthesis plays a crucial to constrain the r-process. At LNS, an intense activity on the s-process is ongoing focusing on:

1. Investigating the neutron sources of the s-process: ${}^{13}C(\alpha,n){}^{16}O$ and ${}^{22}Ne(\alpha,n){}^{25}Mg$

2. Constraining astrophysical models of s-process by studying production and destruction of probe nuclei (mainly ¹⁹F) Fluorine is very sensitive on the stellar physical conditions, so its abundance allows us to see "inside" the s-process site

Red band: ${}^{13}C(\alpha,n){}^{16}O$ S-factor measured at LNS down to astrophysical energies

Astrophysical Journal 777 (2013) 143 Astrophysical Journal 895 (2018) 105

Red band: ¹⁹F(p,α)¹⁶O S-factor measured at LNS down to astrophysical energies

Astrophysical Journal 845 (2017) 19

Nuclear physics input: n-capture reactions

100

50

-50

-100

% Difference

Little or no data on n-capture cross sections available \rightarrow too short T_{1/2} Cross section calculations necessary. How reliable? Often, worse than 1 order of magnitude

How to perform measurements? → Indirect methods e.g. Trojan Horse Method, Surrogate reactions

Important <u>neutron capture rates</u> in neutron star mergers

- Along the hot r-process path no sensitivity on cross sections owing to $(n,\gamma) \Leftrightarrow (\gamma,n)$ equilibrium - **Enhanced sensitivity for neutron star mergers** since neutrons are available when (γ,n) reactions become negligible

Prog. Part. Nucl. Phys. 86 (2016) 86

The THM for n+radioactive nucleus reactions

RIB experiments: mostly neutron but also p,a induced reactions to tackle the nucleosynthesis beyond Fe T > 10^8 K $\Rightarrow E_0 \sim 100$ keVs - MeVs $\leq E_{coul} \rightarrow 10^{-6}$ barn $< \sigma < 10^{-3}$ barn

Experimental Issues:

- low beam intensities (several o.d.m. lower than for stable beams)
- beam energies usually significantly larger than those needed for astrophysical studies
- changing beam energies in small steps to study the excitation function is often impractical.
- n-targets still under development, low density

THM

- Higher beam energies complying with available RIB facilities
- A single beam energy to study the excitation function → intercluster motion used to cover the astrophysical energy region.
- Use of d-targets (CD₂) as virtual n-targets

The THM for n+radioactive nucleus reactions

p Dam18

Benchmarks (stable nuclei or "almost stable"):

¹⁷O(n,α)¹⁴C PRC 95 (2017) 025807, PRC 87 (2013) 012801
⁶Li(n,α)³H JPG 37 (2010) 125105, EPJA 25 (2005) 649
⁷Be(n,α)⁴He APJ, 879:23 (2019)
⁷Be(n,α)⁴He & ⁷Be(n,p)⁷Li APJL 915 :L13 (2021)

Nuclear physics input: β -delayed n-emission

 S_n (neutron separation energy) < Q_β (Q-value β -decay)

"Delayed": emission with β -decay half-life of the precursor nucleus ^AZ

Important nuclear structure information:

- Time-dependence of n-emission $\rightarrow T_{1/2}(^{A}Z) \approx$ few ms tens of s
- Emission probability P_n and neutron spectrum: β -strength above S_n

Important β -delayed neutron emitters in neutron star mergers

Influence on nucleosynthesis:

- Injection of neutrons during freezeout
- Production of less-neutron-rich nuclei

Reshuffle of r-process yields

Prog. Part. Nucl. Phys. 86 (2016) 86

Nuclear physics input: β -delayed n-emission

PRC83, 045809 (2011)

Cold scenario: the case of neutron star mergers

Production of additional neutrons vs. depletion of neutron rich nuclei

Thus we find the most favored solutions tend to initially populate a rare earth peak at lower A, and late-time neutron captures shift the peak to the correct placement.

POLYFEMO @ LNS to study β -delayed n-emission

FRIBs: in-flight fragment separator

Cocktail beams

→ Possibility to measure many β n emitters at the same time.

Candidate nuclei to test the approach: ⁶⁶Co ($T_{1/2} \simeq 0.2$ s) and ⁷²Ni ($T_{1/2} \simeq 1.6$ s)

Journal of Physics: Conf. Series 1014 (2018) 012016

FRIBs will be coupled with the Polycube neutron detector for P_n measurements

In the next future, improvements in the ECR sources, Cyclotron and FRIBS (FRAISE) upgrade will extend the range of the measured nuclei

n_TOF: Fission Recycling

In explosive scenarios (supernovae and

neutron star mergers) the fission products

of the heavier elements up to A~250, can be

seed for additional r-processing.

N Colonna, et al., The fission experimental programme at the CERN n_TOF facility: status and perspectives, The European Physical Journal A 56 (2), 1-49, 2020

This Fission Recycling process populates the

intermediate mass region, with modification of

the A~130 r-process abundance peak

FR explains the abundance observed in the solar sistem, in particular in the lanthanides region.

Cross section measurements of neutron induced fission reactions

• Well suitable for radioactive isotopes (actinides)

n_TOF

- Possibility of extending the resolved resonances region at higher energy values
- To measure fission cross sections up to very high energy (500MeV at least)

Two Exp. area	Exp. area 1	Exp. area 2
Neutron flux	High (10 ⁵ n/bunch)	Very high (10 ⁷ n/bunch)
Energy range	Very wide (therm. – GeV)	Wide (therm. – 100 MeV)
Energy resolution	Very good (10 ⁻⁴)	Good (10 ⁻³)
Expecially suitable for:	Narrow resonances	Short lived radioactive isotopes, low cross sections

LNS-nTOF team: Fission measurements using silicon detectors

Silicon detectors 5x5 cm², 200µm

M Mastromarco, S Amaducci et al., The European Physical Journal A 58 (8), 1-13, 2022 S Amaducci, L Cosentino et al., The European Physical Journal A 55 (7), 1-19, 2019

Measurements by LNS group has led to improvements in 235U standard cross section (used as reference for all fission measurements)

- High energy resolution -> To extend the Resolved Resonance Regions
- Wide energy range -> From thermal to tens MeV (with suitable configurations possible to reach even up to hundreds MeV)
- High reliability and high resistance to radiation damage
- Modular design -> High versatility in detector geometry (including annular) and signal readout

ASY-EOS: a first constraint on high-density symmetry energy

Bayesian inference to combine data from astrophysical observations of neutron stars and from heavy-ion collisions of gold nuclei at relativistic energies with microscopic nuclear theory calculations to improve our understanding of dense matter. W.G. Lynch, M.B. Zhang, arXlv:2106.10119 PREX, PRL 126, 172502 (2021) Combining HIC and astrophysical results in the same Bayesian analysis to constrain neutron matter

Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions S. Huth et al. https://www.nature.com/articles/s41586-022-04750-w

EOS

« HIC » = FOPI+ASY-EOS+AGS - « Astro » = GW, NICER (pulsar X-ray hot spots)

Combining information from HICs and astrophysical informations

- HIC data favors larger pressures at 1-1.5 ρ₀, where sensitivity is highest
- similar observations with NICER data
- low densities, HICs have clear impact on total posteriors
- EOS at higher densities (>2p₀) mostly determined by astrophysical observations
 Conclusion
- advancing HIC experiments to higher densities
- investigating transport models

the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission

Advancing to higher densities (towards $2p_0$)

Higher incident energies

A new experiment (ASY-EOS II) inside the NUSTAR/R3B collaboration, asking to measure excitation function of the n/p elliptic flow in Au+Au collisions (@ 250, 400, 600, and 1000 AMeV), has been recently submitted (June 2022) to the GSI PAC

PANDORA: ECR plasma trap for interdisciplinary studies in nuclear physics and nuclear astrophysics

- PANDORA concept: compact plasma trap to magnetically confine ions of radioisotopes in a microwave-sustained ECR plasma
- Goals: nuclear β-decay and spectroscopic measurements in a plasma resembling astrophysical conditions (temperature, ion charge state distribution), BNS ejecta opacity (Pidatella's talk)
- Plasma diagnostics system: RF probes, optical and X-ray spectrometers allowing direct correlation of experimental measurements to plasma density and temperature
- Assembling multi-diagnostic setup: simultaneously monitor plasma parameters and carry measurements under stable conditions

- Electron dens: $10^{12} 10^{14}$ cm⁻³
- Electron Energy: ~ eV 100 keV
- Ion dens: 10^{11} cm^{-3}

Mascali,D. et al, Eur. Phys. J. A (2017) 53: 145 Mascali D. et al, Universe 8 (2), 80 (2022) PHYSICS OF INTEREST FOR MMA AND NUCLEAR ASTROPHYSICS s-process nucleosynthesis + βdecay branching

Plasmas for

Decay

Astrophysics Nuclear

Observation and Radiation for Archaeometry

- r-process cosmic sites
- Nuclear reaction rates in stars
- Compact binary object spectroscopy (kilonova transient): to characterize composition and to identify GW events

PANDORA's challenges: "Collapse" of ¹⁷⁶Lu lifetime

Estimation of lifetime variation as a function of plasma temperature

t12 [yr]

"Measurability" of ¹⁷⁶Lu lifetime from GEANT-4 simulations (by an array of 14 HpGe-detectors)

Summary

1. Increasingly accurate observations call for more accurate nuclear data on the r-process

 \rightarrow Constraining the r-process through a better understanding of the s-process:

a. study of the neutron sourcesb. study of production/destruction of critical elements

 \rightarrow Study of nuclear reactions involved in the r-process

a. indirect study of n+RIB reactionsb. Investigation of the beta-delayed neutron emission

2. n-induced reactions to tackle the contribution of fission recycling process to r-process

3. nuclear reactions to constraint nuclear equation of state and symmetry energy at high density \rightarrow NS radius

4. innovative magnetic plasma trap, especially to study ß-decays and opacities under astrophysical conditions (plasma made up of lanthanides)

THANK YOU VERY MUCH FOR YOUR ATTENTION!