Euclid Preparation: Performance assessment of the **NISP Red-Grism** through **spectroscopic simulations** for the **Wide and Deep surveys**

Louis Gabarra

INFN Padua, Italy

Co-authors: C. Mancini, L. Rodríguez-Muñoz, G. Rodighiero, M. Scodeggio, M. Talia, C.Sirignano, S. Dusini, L. Pozzetti, M. Moresco, D. Vergani, E. Palazzi, E. Maiorano, E. Rossetti, W. Gillard, B. Granett, M.Fumana, L. Paganin, G. Zamorani, L. Bisigello, M. Hirschmann, F. La Franca, J. Zoubian, V. Allevato, C.Laigle et al.

PUMA 2022 Conference: Sestri Levante, Italy

27th of September 2022

Euclid Mission: Study of the nature of the Dark Energy and Dark Matter **up to z \approx 2**

Euclid Mission: Study of the nature of the Dark Energy and Dark Matter **up to z ≈ 2**

NISP Galaxy Clustering* for BAO & RSD study

Legacy Science: Optical rest-frame spectra for 10s of millions of galaxies

Louis Gabarra

PUMA Conference

Spectroscopic requirement for the Cosmological probe (#1/2): The spectral calibration

Spectroscopic requirement for the Cosmological probe (#1/2): The spectral calibration

Louis Gabarra

PUMA Conference

Spectroscopic requirement for the Cosmological probe (#2/2): The detector sensitivity

Galaxy number density required of 1700 deg⁻²

Louis Gabarra

Spectroscopic requirement for the Cosmological probe (#2/2): The detector sensitivity

Galaxy number density required of 1700 deg⁻²

Louis Gabarra

Poorly sampled redshift range 1.5 < z < 2 due to:</p>

- **Optical strong emission lines** are too blue to be observed with **classical optical spectrographs**
- Absorption and emission from **atmosphere in the NIR**
 - → It includes the *redshift desert* 1.4 < z < 1.8 Soon to be a forest!

Poorly sampled redshift range 1.5 < z < 2 due to:</p>

- **Optical strong emission lines** are too blue to be observed with **classical optical spectrographs**
- Absorption and emission from **atmosphere in the NIR**
 - → It includes the *redshift desert* 1.4 < z < 1.8 Soon to be a forest!

Euclid Wide Survey is 15,0000 deg² about 100,000 times bigger than the 3D-HST survey!

> Poorly sampled **redshift range 1.5 <** *z* **< 2** due to:

- **Optical strong emission lines** are too blue to be observed with **classical optical spectrographs** _
- Absorption and emission from **atmosphere in the NIR**
 - \rightarrow It includes the *redshift desert* 1.4 < z < 1.8 Soon to be a forest!
- **Euclid Wide Survey** is 15,0000 deg² \Leftrightarrow about **100,000 times bigger than the 3D-HST survey!**

Sestri Levante, 27th of September 2022

Louis Gabarra

- PROS:

- CONS:

•

- > Poorly sampled **redshift range 1.5** < *z* < **2** due to:
 - **Optical strong emission lines** are too blue to be observed with **classical optical spectrographs** _
 - Absorption and emission from **atmosphere in the NIR**
 - \rightarrow It includes the *redshift desert* 1.4 < z < 1.8 Soon to be a forest!
- > Euclid Wide Survey is 15,0000 deg² \Leftrightarrow about 100,000 times bigger than the 3D-HST survey!

PILOT RUN simulations to estimate NISP's capabilities

•

PUMA Conference

Objectives of the **PILOT RUN**

⇔ Simulating thousands of **Star Forming galaxies at 0.3** ≤**z** ≤**2.5**

- > To **develop** a solid methodology to build **synthetic spectra including emission lines**
- Simulating thousands of RGS spectra to assess:
 - 1. The **NISP simulator** (SIM/TIPS) + spectral extraction (SIR) performance
 - 2. The NISP/RGS performance for the Wide & Deep field surveys
 - 3. The **effect of the galaxy shape** on the quality of the slitless spectra

PUMA Conference

Sestri Levante, 27^{th} of September 2022

Description of the simulation datasets (1/2): Simulating the **Euclid Wide and Deep** surveys

> Starting from publicly released **multiwavelength photometry** catalogs: **from UV to far-IR!**

Louis Gabarra

Description of the **simulation datasets** (1/2): Simulating the **Euclid Wide and Deep** surveys

- > Starting from publicly released **multiwavelength photometry** catalogs: **from UV to far-IR**!
- ➢ SED fitting parameters available in the catalogs → Continuum (Bruzual & Charlot) + Emission line fluxes
- Sources from the COSMOS and GOODS-N fields that are part of the Euclid auxiliary fields*

* Fields scheduled for deep observations for photometric redshift calibration and colour gradient calibration purposes

Louis Gabarra

Description of the **simulation datasets** (1/2): Simulating the **Euclid Wide and Deep** surveys

- > Starting from publicly released **multiwavelength photometry** catalogs: **from UV to far-IR!**
- ➢ SED fitting parameters available in the catalogs → Continuum (Bruzual & Charlot) + Emission line fluxes
- Sources from the COSMOS and GOODS-N fields that are part of the Euclid auxiliary fields*

* Fields scheduled for deep observations for photometric redshift calibration and colour gradient calibration purposes

Louis Gabarra

PUMA Conference

Sestri Levante, 27^{th} of September 2022

Probing the **effect of the galaxy shape** on the quality of the slitless spectra Simulating **thousands of times** the **same galaxy** with varying **Disk R50**

- > Simulating **thousands of times** the **same galaxy**, i.e. same incident spectra
- \succ Galaxy located at **z** = **1.6** → **H**α (6e-16 CGS) and **[OIII]5008** (3e-16 CGS) fall in the RGS passband
- > We change the morphological parameters **ONE AT A TIME**:
 - -1) Changing the **inclination**, i.e. from edge-on to face-on (from 0° to 90°)
- **4 datasets** 2) Changing the **position angle** of the disk to the dispersion axis (from 0° to 90°)
- of **1248** \prec 3) Changing the **Bulge fraction** (from 0 to 1)

sources

4) Changing the **disk size** (from 0.01" to 2")

PhD thesis, Outini (2019)

Sestri Levante, $27^{\rm th}$ of September 2022

Louis Gabarra

Probing the **effect of the galaxy shape** on the quality of the slitless spectra Simulating **thousands of times** the **same galaxy** with varying **Disk R50**

Probing the **effect of the galaxy shape** on the quality of the slitless spectra Simulating **thousands of times** the **same galaxy** with varying **Disk R50**

The **spectral resolution** degradation as the Disk R50 increases

SNR

6

5

Louis Gabarra

PUMA Conference

Probing the **effect of the galaxy shape** on the quality of the slitless spectra Simulating **thousands of times** the **same galaxy** with varying **Disk R50**

Louis Gabarra

PUMA Conference

Euclid Wide and Deep Field Surveys simulations: True Versus Extracted fluxes

PUMA Conference

Euclid Wide and Deep Field Surveys simulations: Deriving the **RGS detection limit** at **SNR = 3.5**

Euclid Wide and Deep Field Surveys simulations: Deriving the **RGS detection limit** at **SNR = 3.5**

Sestri Levante, 27th of September 2022

Louis Gabarra

Conclusion and **NEXT STEPS**

- > Validation of the **OU-SIM & OU-SIR pipeline**
- Characterization of the degradation of the SNR as the Disk R50 increases
 - ⇒ SNR emission lines & continuum drops by approx. 20% as the disk R50 doubles
- > Preliminary assessment of the NISP Red-Grism capabilities

Simulation	Exposure time (s)	Continuum <i>H</i> band (mag)	Emission lines $H\alpha$ (CGS)
EWS	2212	19.5 ± 0.2	$(2.5 \pm 0.6) \times 10^{-16}$
EDS	22 120	20.8 ± 0.6	$(6.9 \pm 2.8) \times 10^{-17}$

Median disk radius of the sample = 0.4"

> NEXT STEPS:

- Coming simulations
 - With a bigger sample of simulated spectra
 - Testing spectral decontamination and optimal extraction
 - Including the **blue grism**

