Cosmology with cosmic void statistics in galaxy surveys

Giovanni Verza

UNIVERSITÀ DEGLI STUDI DI PADOVA

PUMA22, Sestri Levante, 27th September 2022

GV is supported by the project "Combining Cosmic Microwave Background and Large Scale Structure data: an Integrated Approach for Addressing Fundamental Questions in Cosmology", funded by the MIUR Progetti di Rilevante Interesse Nazionale (PRIN) Bando 2017 - grant 2017YJYZAH

1. The void size function

a. The void size function in the presence of Dynamical Dark Energy The void size function in Euclid survey **2. The halo bias in cosmic voids**

Cosmic voids ID & features

- Under-dense regions
- They span a large range of scales and are the largest observable structures in the cosmic web (from tens to hundreds of Mpc)
- o Suited to study dark energy and modified gravity, massive neutrinos, primordial non-Gaussianity, etc.
- \circ From linear to mildly non-linear regimes \circledR 500 (do not experience shell-crossing, virialization, collapse...)
- o Studying voids requires redshift surveys with very large volume e.g. Euclid, Roman, SphereX, PFS, DES, DESI, Vera Rubin Observatory, BOSS

JCAP12(2019)040

The void size function

The void size function in the presence of Dynamical Dark Energy

Based on **GV**, Pisani, Carbone, Hamaus, and Guzzo 2019, The Void Size Function in Dynamical Dark Energy Cosmologies, JCAP12(2019)040

"Dark Energy and Massive Neutrino Universe" (DEMNUni) set of simulations (Carbone et al. 2016)

- Simulation box: Vol. $(2h^{-1}Gpc)^3$, $2048³$ dark matter part., $M = 8 \times 10^{10} h^{-1} M_{\odot}$
- \bullet 2048³ neutrino particles: $\sum m_{\nu} = 0, 0.16, 0.32 \,\text{eV}$ for each EoS
- Dark energy equation of state (EoS) Chevallier-Polarski-Linder (CPL) parametrisation: $w(a) = w_0 + w_a(1 - a)$ $w_0 = -1$; $w_a = 0$ (ACDM) $w_0 = -0.9, -1.1; w_a = -0.3, 0.3$

Void abundances in the DEMNUni simulations

The void size function in Euclid survey

Based on Contarini, **GV**, Pisani, Hamaus, et al. 2022, Euclid: Cosmological forecasts from the void size function, A&A, Forthcoming article

The Euclid mission

- ESA space mission, launch of satellite in 2023
- Foreseen duration of the mission: 6 years
- Euclid will probe the last 10 billion years of Universe expansion history
- The mission will observe 15 000 deg² (∼36%) of the sky
- Scientific objectives:
	- o Nature of dark energy and dark matter
	- o Measure neutrino mass scale
	- o Test modified gravity theories by growth of structures

Flagship simulation and lightcone

Simulation box:

- (3780 *h*⁻¹Mpc)³, 2 × 10¹² DM part, *M*_p=2.4×10⁹*M*_⊙
- ΛCDM Plack baseline cosmology

Simulated data used:

- Lightcone: *z* from 0.9 to 1.8 in one octant
- Galaxy properties by HOD
- 60% of completeness simulated: 6.5×10^6 galaxies.

The void size function

Model Validation

Forecasts with MCMC

• Flagship simulation cover ∼ 1/3 of the sky area of Euclid survey

We perform MCMC analysis using as data the expected void size function with corresponding errors

• Poissonian likelihood

$$
\mathcal{L}(\mathcal{D}|\Theta) = \prod_{i,j} \frac{N(r_i, z_j|\Theta)^{N(r_i, z_j|\mathcal{D})} \exp\left[-N(r_i, z_j|\Theta)\right]}{N(r_i, z_j|\mathcal{D})!} \qquad \qquad \mathcal{D} = \text{ Data}
$$

$$
\Theta = \text{ Set of parameters}
$$

 $\overline{ }$

• Geometrical & dynamical distortions included. Cosmic voids are extended object: they are impacted by geometric effect, together with dynamic effects

Cosmological parameter constraints: Ω m , *M* ν , *w*

Cosmological parameter constraints: $\Omega_{\rm m}$, $M_{\rm v}$, $w_{\rm o}$, $w_{\rm a}$

Parameters constraints: breaking degeneracies

The void size function: results summary

- 1. We forecast the void size function in Euclid
- 2. We validate the theoretical model
- 3. We show the power of the void size function and its complementarity to other probes in constraining cosmological parameters

The halo bias in cosmic voids

Based on **GV**, Carbone, Renzi, 2022, The halo bias inside cosmic voids, ArXiv:2207.04039

The void density profile and bias: ΛCDM analysis from the DEMNuni simulations

The stacked void density profile:

- It is the mean density contrast in spherical shells at a distance *r* from the void center
- In the averaging procedure, we normalize the distance from the void center with respect to the void radius R_{eff}

The halo bias inside cosmic voids: the relation between the void density profiles in the halo distributions, $\delta_{\rm v}^{\rm h}(r)$, and in the underlying matter distributions, $\delta_{\rm m}^{\rm h}(r)$.

- Go beyond the linear bias model
- Halo bias is in one-to-one correspondence with the halo mass function \bullet

The halo mass function in cosmic voids

$$
\frac{\mathrm{d}n_{\mathrm{h}}}{\mathrm{d}M} = \frac{\bar{\rho}_{\mathrm{m}}}{M} f[\nu(z), p, q] \left| \frac{\mathrm{d}\nu(z)}{\mathrm{d}M} \right|
$$

Halo mass function (HMF): Ellipsoidal collapse (Sheth & Tormen 1999)

$$
f(\nu, p, q) = \sqrt{\frac{2}{\pi}} A \left[1 + (q\nu^2)^{-p} \right] \sqrt{q} e^{-q\nu^2/2}
$$

$$
\nu = \delta_c / \sigma(M), A = \left[1 + \Gamma(1/2 - p) / (2^p \sqrt{\pi}) \right]^{-1}
$$

The peak-background split (PBS) approach: Halo formation modified by a long-wavelength density

perturbation $\delta_{\vert w}$ acting like a local modification of the background density

$$
\frac{dn_h}{dM} = [1 + \delta_{lw}(z)] \frac{\bar{\rho}_m}{M} f[\tilde{\nu}(z), p, q] \frac{d\tilde{\nu}(z)}{dM}
$$

$$
\nu \to \tilde{\nu} = [\delta_{sc}(z) - \delta_{lw}^L(z)] / \sigma(M)
$$

Theoretical HMF against measurements from the DEMNUni simulations in the ΛCDM case **GV**, Carbone, Renzi, 2022 ArXiv:2207.04039

The $p_{\rm _v}$ and $q_{\rm _v}$ evolution

The $p_{\rm v}^{}(\mathsf{r})$ and $q_{\rm v}^{}(\mathsf{r})$ parameters, along the void profile, of the multiplicity function associated to our HMF model, fitted to simulated measurements.

Upper panels: 68% and 95% CL in the p-q plane. The contour colors denote the distance from the void center, the black stars, together with the dot-dashed blue and dotted orange lines, represent p_{μ} and $q_{\tiny \bigcup}^{}.$

Lower panels: same quantities as a function of r: $p_{\tiny \sqrt{}}({\sf r})$ (blue solid), $q_{\text{v}}(r)$ (orange dashed), p_{U} (blue dash-dotted horizontal), and q_{u} (orange dotted horizontal).

GV, Carbone, Renzi, 2022 ArXiv:2207.04039

The halo bias inside cosmic voids: new theoretical model

The halo bias in cosmic voids: results summary

- For the first time to date, we show that the halo mass function inside cosmic voids is not universal, rather it depends on the distance, *r*, from the void center;
- We provide theoretical model able to describe the halo mass function along void profiles;
- Applying the peak-background split technique we are able to obtain a theoretical prediction of the halo bias within voids.
- Several possible applications:
	- o Analysis involving the void size function.
	- o Analysis involving redshift-space distortions around voids.
	- o Extend our modeling to cosmologies alternative to the ΛCDM model, i.e. in the presence of massive neutrinos and dynamical dark energy which may alter halo formation inside voids;

Thank you for your attention **Giovanni Verza** giovanni.verza@pd.infn.it

Backup slides

Void finder: VIDE 2.0 (Sutter et al. 2015)

- Voronoi tessellation
- Relative minima
- Watershed algorithm

Constraints from the void size function

Void abundances in the DEMNUni simulations

Void abundances in the DEMNUni simulations

