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Forecasting the detection capabilities of
third–generation gravitational–wave detectors

using GWFAST

Francesco Iacovelli
Based on arXiv:2207.02771 and arXiv:2207.06910, in collaboration with:

Michele Mancarella, Stefano Foffa, Michele Maggiore

University of Geneva (UNIGE) – Department of Theoretical Physics

PUMA22 – Sestri Levante 2022
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Forecasts with GWFAST

Outline

1 Introduction

State–of–the–art of GW observations at 2G detectors

3G detectors: how big is the leap?

2 Parameter estimation for 3G detectors

A key issue for 3G forecasts: the number of detections

How the GW community is tackling the challenge

GWFAST: why so ___fast ?

3 Forecasts for 3G detectors with GWFAST: BBH, BNS and
NSBH at ET and ET+2CE

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://www.unige.ch/sciences/physique/theorique/en/
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Forecasts with GWFAST

2G GW detectors, where we stand
3G GW detectors

Introduction: 2G GW detectors, where we stand

SNR = 33
∆Ω = 16 deg2

∆dL/dL = 20%

∆Mc/Mc = 1%

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch
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3G GW detectors

Introduction: 2G GW detectors, where we stand
Thanks to LVK detections, we now have information on the distri-
bution of BBH up to z ∼ 1, and some hints for BNS and NSBH

30

FIG. 9. The empirical cumulative density function F̂ =
P

k Pk(x)/N of observed binary parameter distributions (derived
from the single-event cumulative distributions Pk(x) for each parameter x) are shown in blue for primary mass (left), e↵ective
inspiral spin (center), and redshift (right). All binaries used in this study with FAR< 1/4yr are included, and each is analyzed
using our fiducial noninformative prior. For comparison, the gray bands show the expected observed distributions, based on
our previous analysis of GWTC-2 BBH. Solid lines show the medians, while the shading indicates a 90% credible interval on
the empirical cumulative estimate and selection-weighted reconstructed population, respectively. GW190814 is excluded from
this analysis.

20 40 60 80 100

m1 [M�]

10�3

10�2

10�1

100

101

d
R

d
m

1
[G

p
c�

3
yr

�
1
M

�
1

�
]

GWTC-3

GWTC-2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

10�1

100

101

102

103

d
R

d
q
[G

p
c�

3
yr

�
1
]

GWTC-3

GWTC-2

FIG. 10. The astrophysical BBH primary mass (left) and mass ratio (right) distributions for the fiducial PP model, showing
the di↵erential merger rate as a function of primary mass or mass ratio. The solid blue curve shows the posterior population
distribution (PPD) with the shaded region showing the 90% credible interval. The black solid and dashed lines show the PPD
and 90% credible interval from analyzing GWTC-2 as reported in [11]. The vertical gray band in the primary mass plot shows
90% credible intervals on the location of the mean of the Gaussian peak for the fiducial model.

m1 2 [5, 20]M� m1 2 [20, 50]M� m1 2 [50, 100]M� All BBH

m2 2 [5, 20]M� m2 2 [5, 50]M� m2 2 [5, 100]M�

PP 23.6+13.7
�9.0 4.5+1.7

�1.3 0.2+0.1
�0.1 28.3+13.9

�9.1

BGP 20.0+11.0
�8.0 6.3+3.0

�2.2 0.75+1.1
�0.46 33.0+16.0

�10.0

FM 21.1+11.6
�7.8 4.3+2.0

�1.4 0.2+0.2
�0.1 26.5+11.7

�8.6

PS 27+12
�8.8 3.5+1.5

�1.1 0.19+0.16
�0.09 31+13

�9.2

Merged 13.3 – 39 2.5 – 6.3 0.099 – 0.4 17.9 – 44

TABLE IV. Merger rates in Gpc�3 yr�1 for BBH binaries, quoted at the 90% credible interval, for the PP model and for three
non-parametric models (Binned Gaussian process, Flexible mixtures, Power Law + Spline). Rates are given for three
ranges of primary mass, m1 as well as for the entire BBH population. Despite di↵erences in methods, the results are consistent
among the models. BGP assumes a non-evolving merger rate in redshift. The merger rate for PP, FM, and PS is quoted at a
redshift value of 0.2, the value where the relative error in merger rate is smallest.
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FIG. 15. The distributions of component spin magnitudes � (left) and spin-orbit misalignment angles ✓ (right) among
binary black hole mergers, inferred using the Default component spin model described further in Sect. B 2 a; e.g., both
spin magnitudes are drawn from the same distribution. In each figure, solid black lines denote the median and central 90%
credible bounds inferred on p(�) and p(cos ✓) using GWTC-3. The light grey traces show individual draws from our posterior
distribution on the Default model parameters, while the blue traces show our previously published results obtained using
GWTC-2. As with GWTC-2, in GWTC-3 we conclude that the spin magnitude distribution peaks near �i ⇡ 0.2, with a tail
extending towards larger values. Meanwhile, we now more strongly favor isotropy, obtaining a broad cos ✓i distribution that
may peak at alignment (cos ✓i = 1) but that is otherwise largely uniform across all cos ✓.
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FIG. 16. Left panel : Inferred distribution of �e↵ for our latest full analysis in black. For comparison, the blue distribution and
interval shows our inferences derived from GWTC2. Right panel : Corresponding result for �p. While both panels in this figure
are derived using the Gaussian spin model, we find similar conclusions with the other spin models used to analyze GWTC-2.

at 99.7% credibility.
This interpretation was challenged in [194] and [195],

which argued that no evidence for extreme spin misalign-
ment exists if BBH spin models are expanded to allow the
existence of a secondary subpopulation with vanishingly
small spins. Other avenues of investigation are also in
tension with the identification of extreme spin-orbit mis-
alignment. When the �e↵ distribution is allowed to cor-

relate with other BBH parameters, like the binary mass
ratio (see Sec. VIIB), evidence for negative �e↵ values
diminishes [196]. Motivated by the concerns raised in
[194] and [195], we repeat our inference of �e↵,min but
under an expanded model that allows for a narrow sub-
population of BBH events with extremely small e↵ective

inspiral spins:

p(�e↵ |µe↵ , �e↵ , �e↵,min) = ⇣bulkN[�eff,min,1](�e↵ |µe↵ , �e↵)

+ (1 � ⇣bulk)N[�1,1](�e↵ |0, 0.01).
(18)

Here, ⇣bulk is the fraction of BBHs in the wide bulk pop-
ulation, truncated above �e↵,min, while (1 � ⇣bulk) is the
fraction of events residing in the vanishing spin sub-
population, which formally extends from �1 to 1. When
repeating our inference of �e↵,min under this expanded
model, our data still prefer a negative �e↵,min but with
lower significance. As seen in Fig. 18, we now infer that
�e↵,min < 0 at 92.5% credibility. This expanded model
allows us to additionally investigate evidence for the exis-

R0,BBH = 10.3 − 27 Gpc−3 yr−1

R0,BNS = 10 − 1700 Gpc−3 yr−1

R0,NSBH = 7.8 − 140 Gpc−3 yr−1

LVK Collaboration, 2111.03634 (2021)

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://arxiv.org/abs/2111.03634
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2G GW detectors, where we stand
3G GW detectors

Introduction: 3G GW detectors
2G detectors offer outstanding possibilities. . .

. . . but the potential of 3G detectors is unprecedented

ET:
Between 100 m and 300 m underground;
Six 10 km detectors arranged in a triangle
with “xylophone” design:
– Cryogenic for LF and high power at HF;
– No blind spots;
– Sensitive to both GW polarizations;
Proposed more than 10 years ago (Punturo
et al. (2010), Hild et al. (2011)) and in-
cluded in ESFRI roadmap in 2021.
Science case in Maggiore et al. (2020)

ET Collaboration created a few months ago!

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://iopscience.iop.org/article/10.1088/0264-9381/27/19/194002
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3G GW detectors

Introduction: 3G GW detectors

2G detectors offer outstanding possibilities. . .
. . . but the potential of 3G detectors is unprecedented

CE:
Two facilities of 40 km and 20 km:
length reduces many noise sources
(shot, radiation pressure,. . . );
Tunable design:
– can be optimized for CBCs;
– can be optimized for BNS PM;
CE white paper in 2019 (Reitze et al.
(2021)) and CE Horizon Study docu-
ment recently published (Evans et al.
(2021))

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://arxiv.org/abs/1907.04833
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Introduction: 3G GW detectors

Thanks to their technological advancements and the bigger
facilities, ET and CE will have a broader frequency range and
sensitivities improved more than 10 times compared to LVK

100 101 102 103

f (Hz)
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10−23

10−22

10−21

S
1/

2
n

(f
)

(H
z−

1/
2
)

LIGO O4 Virgo O4 KAGRA O4 ET CE 40 km CE 20 km

100 101 102 103 104

Mtot (M�)

10−2

10−1

100

101

102

z

BBH m1 = m2 ; χ1,z = χ2,z = 0

LVK O4

ET

2CE

cryogenic
underground

IMBHsubsolar
long arms

laser power

BBH z ∼ 100
BNS z ∼ 10

Assessing the capabilities of 3G detectors is fundamental
to take informed decisions!
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Challenged by the numbers
Fisher codes
GWFAST

PE at 3G detectors: challenged by the numbers

One of the key challenges when performing studies for ET and CE
that emerged in recent years is the number of detectable sources

Network BBH/yr BNS/yr NSBH/yr

LVK–O4 O
(
102) O(1 − 10) O(1 − 10)

ET O
(
104) O

(
103 − 105) O

(
103 − 104)

ET+2CE O
(
104 − 105) O

(
104 − 105) O

(
103 − 105)

Currently used Bayesian parameter estimation codes, like BILBY,
can take O(1 day/ev) to perform the analysis. . .

. . . and we do not have 105 days :'(

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://www.unige.ch/sciences/physique/theorique/en/
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Challenged by the numbers
Fisher codes
GWFAST

PE at 3G detectors: Fisher codes
Various groups all across the world started to tackle the problem,
and by now there are three public codes that can perform such a

complex analysis exploiting the Fisher matrix formalism:
gwbench: a novel Fisher information package for gravitational-wave benchmarking

S. Borhanian1, 2

1Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
2Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany⇤

(Dated: August 31, 2021)

We present a new Python package, gwbench, implementing the well-established Fisher information formalism
as a fast and straightforward tool for the purpose of gravitational-wave benchmarking, i.e. the estimation of
signal-to-noise ratios and measurement errors of gravitational waves observed by a network of detectors. Such an
infrastructure is necessary due to the high computational cost of Bayesian parameter estimation methods which
renders them less e↵ective for the scientific assessment of gravitational waveforms, detectors, and networks of
detectors, especially when determining their e↵ects on large populations of gravitational-wave sources spread
throughout the universe. gwbench further gives quick access to detector locations and sensitivities, while including
the e↵ects of Earth’s rotation on the latter, as well as waveform models and their derivatives, while giving access
to the host of waveforms available in the LSC Algorithm Library. With the provided functionality, gwbench is
relevant for a wide variety of applications in gravitational-wave astronomy such as waveform modeling, detector
development, cosmology, and tests of general relativity.

I. INTRODUCTION AND MOTIVATION

The initial detections of gravitational waves (GWs) emitted
during the coalescences of black holes and neutron stars [1, 2]
have confirmed a fundamental prediction of general relativity
and opened a new observational window into the universe in
the same breath. Further detections by the LIGO and Virgo
observatories have pushed the number of observed GW signals
into the decades [3], and hence set o↵ the era of GW astronomy.
This success has ignited the desire for detections that allow for
better estimation of the information buried in the signals that
the GW observatories record, thus allowing us to reveal new
phenomena and novel physics as well as shed light into greater
depths of the cosmos.

Such desires pose challenges on many essential components
in the figurative GW detection machinery, with the develop-
ment of new waveform (WF) models and the planning of future
detector designs being two important tasks to tackle. The for-
mer is imperative to lower the systematic biases in what kind
of signals the observatories will be able to detect, to increase
the information that can be extracted from the detector output,
and possibly to lower the computational cost of WF model
evaluation. The inclusion of higher-order spherical harmonic
modes beyond the quadrupole [4, 5] is one such example illus-
trating the impact of improved WF models as it enhances the
detectability of binaries whose orbits are highly inclined with
respect to the line of sight and allows for an improved param-
eter estimation by lifting the degeneracy between luminosity
distance and inclination angle.

The detector challenge is even more fundamental: new,
ground-breaking analyses require ‘richer’ data to forge through.
The current, so called second-generation (2G) of GW detectors,
LIGO Hanford and Livingston [6] as well as Virgo [7], will
be joined by two more detectors, KAGRA [8] and LIGO-India
[9], and further sensitivity improvements are planned to go in
e↵ect in the years to follow [10, 11]. Nevertheless the limits

⇤ ssohrab.borhanian@uni-jena.de

of these facilities to address future, scientific goals are already
apparent [12, 13]. Thus the GW community has been pursuing
the conceptualization of the next generation of detectors. The
proposals range from the Voyager e↵ort, envisioning a mul-
titude of upgrades to the LIGO facilities [14], to completely
new, third-generation (3G) observatories, namely the Einstein
Telescope [13, 15, 16] and the Cosmic Explorer e↵ort [17]. In
addition, e↵orts are under way to search for GW from space,
with the Laser Interferometer Space Antenna (LISA) [12].

Independently of what WF models shall be developed and
adopted, or which facilities continue or start operating, the GW
community will need tools to benchmark the scientific output
of any combination of these two components in a quick and
e�cient way. One such tool is the Fisher information formal-
ism (FIF) [18, 19] which has proven to be a viable method
for GW benchmarking. Its major caveat is its dependence on
high signal-to-noise ratios to give reliable results, thus making
it mostly suitable to exceptional events in current detectors.
Nevertheless, the formalism is very useful and widely appli-
cable in studies entailing future generations of detectors. For
an extended review on the caveats of the FIF we refer to [20].
Further, developments to improve the speed of full Bayesian
parameter estimation, for example via the application of ma-
chine learning techniques [21–24], could make the Bayesian
framework a viable benchmarking tool in the future.

In this work, we present a new Python package, gwbench,
that implements the FIF in an easy-to-use manner and further
provides means to compute and access a host of quantities that
are necessary for benchmarking. For a selection of GW de-
tectors, a so-called network, and given a WF model, gwbench
can compute: plus and cross polarizations of the WF, detector
power spectral densities, antenna patterns, location phase fac-
tors, detector responses, detector and network signal to noise
ratios, and measurement errors in the WF model parameters
from the FIF. Two particularly substantial features are the inclu-
sion of WFs from the LSC Algorithm Library (LAL) [25, 26]
and the capability to include the e↵ects of Earth’s rotation in
the detector antenna patterns.

The paper is structured as follows: Section II introduces the
Cosmic Explorer trade study which stimulated the develop-
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gwfish: A simulation software to evaluate parameter-estimation capabilities of
gravitational-wave detector networks

Jan Harms1,2, Ulyana Dupletsa1,2, Biswajit Banerjee1,2, Marica Branchesi1,2, Boris Goncharov1,2,
Andrea Maselli1,2, Ana Carolina Silva Oliveira3, Samuele Ronchini1,2, and Jacopo Tissino1,2

1
Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy

2
INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy and

3
Department of Physics, Columbia University in the City of New York, New York, NY 10027, USA

(Dated: May 6, 2022)

An important step in the planning of future gravitational-wave (GW) detectors and of the net-
works they will form is the estimation of their detection and parameter-estimation capabilities, which
is the basis of science-case studies. Several future GW detectors have been proposed or are under
development, which might also operate and observe in parallel. These detectors include terrestrial,
lunar, and space-borne detectors. In this paper, we present gwfisha, a new software to simulate
GW detector networks and to calculate measurement uncertainties based on the Fisher-matrix ap-
proximation. gwfish models the impact of detector motion on PE and makes it possible to analyze
multiband scenarios, i.e., observation of a GW signal by different detectors in different frequency
bands. We showcase a few examples for the Einstein Telescope (ET) including the sky-localization
of binary neutron stars, and ET’s capability to measure the polarization of GWs.

I. INTRODUCTION

The gravitational-wave (GW) community is currently
in the phase of developing science cases and analysis tools
of future GW detector networks [1, 2] including potential
upgrades of the current infrastructures Virgo [3], LIGO
[4], LIGO India [5], KAGRA [6], and the proposed Ein-
stein Telescope [7, 8] and Cosmic Explorer [9]. The ap-
proved space-borne detector LISA is expected to begin
observations in the second half of the 2030s [10]. Entirely
new detector concepts are under study like the Lunar GW
Antenna (LGWA) [11]. The networks can be formed be-
tween alike detectors observing at the same frequencies,
but also combining observations in different frequency
bands of the same GW sources [12–14]. Providing a sim-
ulation of conceivable observation scenarios formed by
these detectors is an important part of the science-case
development of future GW detector networks, but also
a challenging and potentially computationally expensive
task. In recent years, a few so-called Fisher-matrix codes
were developed for this purpose [14–16].

In this article, we present the simulation software gw-
fish, which uses frequency-domain GW models combined
with a time-domain simulation of GW detector networks
through the stationary-phase approximation. This cre-
ates a framework to study important aspects of PE with
future detector networks, where the change of position
and orientation of a detector during the observation of
a signal can have an important impact especially on
the sky localization [14, 15, 17, 18]. The calculation of
PE errors is done using the Fisher-matrix approximation
[19], which corresponds to a Gaussian approximation of
the likelihood expected to be acceptable for signals with
higher signal-to-noise ratio. When the Fisher matrix is

a github.com/janosch314/GWFish

used to directly evaluate PE errors like in gwfish, then
priors cannot be considered. As a consequence, overes-
timation and underestimation of PE errors are possible
[20]. It should be noted that Gaussian likelihood approx-
imations based on Fisher matrices can also be used for
posterior sampling, which leads to a significant speed-up
of the likelihood evaluation. This method can be com-
bined with arbitrary priors.

A feature of gwfish is that multiband scenarios can
be simulated as well. It is a simple step to do with Fisher-
matrix codes since Fisher matrices for different detectors
are added irrespective of the frequency band that pro-
vided the signal information. Technically, it just requires
to set up the code so that detector motion and signal
waveforms can be simulated accurately in different fre-
quency bands. This includes the application of the time-
delay interferometry (TDI) formalism to simulate space-
borne detectors like LISA beyond the long-wavelength
regime [21–23], and the support of multiple components
of a detector, e.g., multiple interferometers of a xylo-
phone configuration [24] or multiple sensors for LGWA
type detectors [11]. Each component can be assigned a
duty cycle for more realistic assessments of the observing
scenario. Details of the detector simulation are described
in section II.

The Fisher-matrix formalism is computationally effi-
cient, but numerically less robust than posterior sam-
pling. The numerical challenges concern the calculation
of waveform derivatives and the inversion of Fisher matri-
ces. Waveform derivatives are best carried out in a hybrid
analytical-numerical scheme to minimize the computa-
tional effort and numerical errors, and to keep it compat-
ible with arbitrary waveform models (also referred to as
waveform approximants). In gwfish, the numerical dif-
ferentiation is tuned to the properties of waveform mod-
els to reduce numerical errors. Concerning the inversion
of Fisher matrices, the main issue is that these matrices
can be very close to singular, i.e., with a huge range of
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GWFAST: a Fisher information matrix Python code for third–generation gravitational–wave detectors
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Abstract

We introduce GWFAST a), a Fisher information matrix Python code that allows easy and e�cient
estimation of signal–to–noise ratios and parameter measurement errors for large catalogs of resolved
sources observed by networks of gravitational–wave detectors. In particular, GWFAST includes the e↵ects
of the Earth’s motion during the evolution of the signal, supports parallel computation, and relies on
automatic di↵erentiation rather than on finite di↵erences techniques, which allows the computation
of derivatives with accuracy close to machine precision. We also release the library WF4Py b)

implementing state–of–the–art gravitational–wave waveforms in Python. In this paper we provide a
documentation of GWFAST and WF4Py with practical examples and tests of performance and reliability.
In the companion paper Iacovelli et al. (2022) we present forecasts for the detection capabilities of the
second and third generation of ground–based gravitational–wave detectors, obtained with GWFAST.

1. OUTLINE

GWFAST is a new, fast and accurate software, capable of computing signal–to–noise ratios (SNRs) and parameter
measurement errors for networks of gravitational–wave (GW) detectors, using the Fisher Information Matrix (FIM)
formalism. This approximates the full posterior probability distribution for the parameters of a GW signal (see e.g.
Cutler & Flanagan (1994); Vallisneri (2008); Rodriguez et al. (2013) for a comprehensive treatment) and is used for
forecasts on large catalogs of sources for which a full parameter estimation would be computationally too expensive.
The computational cost is the main limitation of present–day forecast studies, especially for the third generation of
GW detectors. This is related to two main aspects. The first is the duration of the signal (in particular, for binary
neutron stars at ground–based detectors), which requires to correctly account for the time evolution of the antenna
pattern functions and makes the data analysis challenging in terms of computational resources. To our knowledge, the
problem of a full Bayesian inference for even a single one of such events is not manageable with techniques and resources
used for second–generation (2G) detectors. Only recently dedicated approaches have started to be investigated (Smith
et al. 2021). The second aspect is the scalability to large catalogs. The study of the reach and parameter estimation
capabilities of third–generation (3G) detectors is a key aspect for assessing their scientific potential, and typically
requires to study catalogs of tens of thousands of sources. GWFAST is suitable for these applications since it accounts
for state–of–the–art waveform models, the e↵ect of the motion of the Earth, and the possibility of parallel evaluations
when running on large catalogs. Moreover, it does not rely on finite di↵erence techniques to compute derivatives,
but on automatic di↵erentiation, which is a method that does not su↵er from possible inaccuracies arising from the
computation of the derivatives, in particular related to the choice of the step size. Hence we make it publicly available,
together with routines to run in parallel. In this paper we provide a documentation, tests to validate the reliability
of the code, and some examples. A scheme of the organization of the code is reported in Fig. 1. In the companion
paper Iacovelli et al. (2022) we used GWFAST to produce forecasts for the detection capabilities of LIGO–Virgo–KAGRA
(LVK) during their forthcoming O4 run, and of 3G ground–based GW detectors, namely, Einstein Telescope (ET) and
Cosmic Explorer (CE), based on up–to–date models of the expected population of sources.
This paper is structured as follows. In Sect. 2 we describe the conventions for the input parameters and the waveform

models available in GWFAST, which are a pure Python version of those contained in the LIGO Algorithm Library LAL

(LIGO Scientific Collaboration 2018), and compare with their original implementation. The waveform models are

Corresponding author: Francesco Iacovelli

Francesco.Iacovelli@unige.ch

a)
https://github.com/CosmoStatGW/gwfast

b)
https://github.com/CosmoStatGW/WF4Py
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Introduction
PE at 3G detectors

Forecasts with GWFAST

Challenged by the numbers
Fisher codes
GWFAST

PE at 3G detectors: Fisher codes

These independent codes, all featur-
ing some peculiar implementations,
have been cross–checked to assess their
agreement in the context of the ET
OSB Div9

GWBENCH, GWFISH and GWFAST have been used to produce different
science cases for 3G detectors this year:
– Borhanian, Sathyaprakash (2022)
– Ronchini et al. (2022)
– FI, Mancarella, Foffa, Maggiore (2022)

Each paper focuses on some particular aspects, but all of
them contribute to the blossoming future of GW science!

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://arxiv.org/abs/2202.11048
https://arxiv.org/abs/2204.01746
https://arxiv.org/abs/2207.02771
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Fisher codes
GWFAST

PE at 3G detectors: GWFAST

GWFAST is particularly tuned towards high computational speed,
user friendliness, and accuracy in derivative evaluation (which is
the key element of the Fisher approximation), in particular:
=⇒ derivatives are computed

using automatic
differentiation with

=⇒ the code is written in pure
Python (also the waveforms!
See WF4Py)

=⇒ vectorization is exploited to
handle multiple events at a
time, even on a single CPU

{'Mc', 'eta', 'dL',

'theta', 'phi',

'iota', 'psi',

'tGPS', 'Phicoal',

'chi1z', 'chi2z',

'chi1x', 'chi2x',

'chi1y', 'chi2y',

'Lambda1', 'Lambda2',

'ecc'}

input events

TaylorF2 RestrictedPN

IMRPhenomD

IMRPhenomD NRTidalv2

IMRPhenomHM

IMRPhenomNSBH

LAL WF

waveforms.py

waveform model +

PatternFunction, DeltLoc,

GWPhase, GWAmplitudes,

GWstrain,

SNRInteg, FisherMatr,

SignalDerivatives

AnalyticalDerivatives

signal.py

lat, long, xax,
psd path, DutyFactor,
fmin, detector shape,
useEarthMotion

detector 1

lat, long, xax,
psd path, DutyFactor,
fmin, detector shape,
useEarthMotion

detector 2

...

SNR

FisherMatr

optimal location

network.py

detector network

SNRs

Fisher matrices

CheckFisher,

CovMatr,

compute inversion error,

check covariance,

fixParams, addPrior,

compute localization region

fisherTools.py

covariance

parameter errors

sky areas

GWFAST needs ≲ 1 day to run the PE on 105 events!

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://github.com/CosmoStatGW/gwfast
https://github.com/google/jax
https://github.com/CosmoStatGW/WF4Py
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PE at 3G detectors: GWFAST

To asses the reliability of GWFAST we performed the PE analyses
on the samples of real GW events with high SNR and good sky
location, finding consistent results

30 35 40

SNR

G
W
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08

17

10−3 10−2 10−1

∆Mc/Mc

10−1 100 101

∆dL/dL
10 15 20 25

∆Ω90% (deg2)

IMRPhenomD NRTidalv2 TaylorF2 Tides LVC value

20.0 22.5 25.0 27.5 30.0

SNR

G
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19
08

14

10−3 10−2 10−1 100

∆Mc/Mc

10−1 100 101

∆dL/dL
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∆Ω90% (deg2)

IMRPhenomD IMRPhenomHM LVC value
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BBHs at 3G detectors
BNSs at 3G detectors
NSBHs at 3G detectors

Forecasts with GWFAST: BBHs at 3G detectors

Simulating synthetic merger populations, based on the latest LVK
results, through GWFAST it is possible to assess the capabilities of
GW detectors, comparing among different networks and configura-
tions and for different sources
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Forecasts with GWFAST: BBHs at 3G detectors
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Forecasts with GWFAST: BNSs at 3G detectors
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Forecasts with GWFAST: NSBHs at 3G detectors
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PE at 3G detectors

Forecasts with GWFAST

Thanks for your attention. . . questions?

I am also available at Francesco.Iacovelli@unige.ch
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GW parameter estimation
GWFAST implementations

the GW likelihood
MCMC timing for PE
Fisher matrix

GW parameter estimation: the GW likelihood
A GW signal as observed by a detector can be expressed as

s(t) = h0(t) + n(t)

Defining the inner product for any two time–domain signals as

(a | b) = 4Re

{∫ ∞

0
df ã∗(f ) b̃(f )

Sn(f )

}
=⇒ SNR = (h0 | h0)

1/2

we have for the GW likelihood, choosing a waveform model h,

L(s | θ) ∝ exp{− (s − h(θ) | s − h(θ)) /2}

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch

https://www.unige.ch/sciences/physique/theorique/en/
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the GW likelihood
MCMC timing for PE
Fisher matrix

GW parameter estimation: MCMC timing for PE

Performing a full Bayesian PE for a GW signal via an MCMC
sampling of the likelihood is computationally expensive

Signal Sampler nℓ neff
samples

BBH
DYNESTY 2.2 × 108 15000

BILBY-MCMC 3 × 108 5000

BNS BILBY-MCMC 2.5 × 109 5000

Ashton, Talbot (2021)

With BILBY it can take ≳ O(1 day/ev) to perform the estimation

Full PE is not feasible for 105 events

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch
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the GW likelihood
MCMC timing for PE
Fisher matrix

GW parameter estimation: Fisher matrix

In the linearized signal approximation / high–SNR limit, the GW
likelihood can be approximated as a multivariate Gaussian with
covariance

Covij = Γ−1
ij , Γij ≡ − ⟨∂i∂j logL(s |θ)⟩n

∣∣∣∣
θ0

= (∂ih(θ) | ∂jh(θ))
∣∣∣∣
θ0

Γij being the Fisher matrix

The key ingredients are then computing derivatives
and. . . speed!

Francesco Iacovelli Contact: Francesco.Iacovelli@unige.ch
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GW parameter estimation
GWFAST implementations

Derivatives
Waveforms
Vectorization

GWFAST implementations: derivatives

Usually derivatives are computed using finite difference techniques,
but this has some limitations, consider e.g.

f (x) = sin (ln (
√

x)) =⇒ f ′(x) = cos (ln (
√

x))/2x

-5.000000413701855e-06

DeviceArray(0.91329116, dtype=float32)

DeviceArray(0.02036536, dtype=float32)

0.003476493 

0.0 

0.0 

In [28]: from jax import grad 
import jax.numpy as np 
from numpy import sin, cos, log, sqrt 

In [23]: (cos(0.+1e-5) - cos(0.))/1e-5 - (-sin(0)) 

Out[23]:

In [44]: def f(x): 
    return np.sin(np.log(np.sqrt(x))) 
 
def fp(x): 
    return np.cos(np.log(x)/2)/(2*x) 

In [45]: f(10) 

Out[45]:

In [46]: fp(10) 

Out[46]:

In [53]: eps = 1e-5 
print((f(10.+eps) - f(10.))/eps - fp(10.)) 

In [51]: JAXfp = grad(f) 
print(JAXfp(10.) - fp(10)) 

In [50]:  

In [ ]:  

Every function with a closed form expression, however complex, is
built from simple operations (+,−,×,÷), and well–known functions
(exp, cos, ln, . . . ) whose derivative is trivial.

What a pity a machine cannot understand it. . . wait, it can!
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GWFAST implementations: derivatives

Automatic differentiation is a technique to make a machine com-
pute derivatives of any order in a pseudo–analytic way, iteratively
applying the chain rule on a given function.

GWFAST uses the module JAX for automatic differentiation, that ap-
plied to our example function gives

-5.000000413701855e-06

DeviceArray(0.91329116, dtype=float32)

DeviceArray(0.02036536, dtype=float32)

0.003476493 

0.0 

0.0 

In [28]: from jax import grad 
import jax.numpy as np 
from numpy import sin, cos, log, sqrt 

In [54]: import jax 

In [23]: (cos(0.+1e-5) - cos(0.))/1e-5 - (-sin(0)) 

Out[23]:

In [44]: def f(x): 
    return np.sin(np.log(np.sqrt(x))) 
 
def fp(x): 
    return np.cos(np.log(x)/2)/(2*x) 

In [45]: f(10) 

Out[45]:

In [46]: fp(10) 

Out[46]:

In [53]: eps = 1e-5 
print((f(10.+eps) - f(10.))/eps - fp(10.)) 

In [55]: JAXfp = jax.grad(f) 
print(JAXfp(10.) - fp(10)) 

In [50]:  

In [ ]:  

The only requirement is to write the function in a way the machine
can understand, in our case pure Python. . . but LAL is written in C
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GWFAST implementations: waveforms

To make JAX work we translated
the waveform models in Python
and carefully checked the adher-
ence with their originals.

We released them also as a sep-
arate module, WF4Py, which fea-
tures:
TaylorF2,
IMRPhenomD,
IMRPhenomD_NRTidalv2,
IMRPhenomHM,
IMRPhenomNSBH,
IMRPhenomXAS

101 102

10−29

10−26

10−23

A
+

(H
z−

1 )

IMRPhenomXAS

WF4Py

LAL

101 102
−1

0

1

co
s(

Ψ
+

)

101 102

f (Hz)

10−16

10−15

10−14
re

s
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GWFAST implementations: vectorization

Having a pure Python code
and using JAX, it is possible to
exploit what is called vector-
ization, i.e. the possibility to
perform calculations for multi-
ple events at a time even on
a single CPU, not resorting to
for loops.

This makes GWFAST ideal to
handle large catalogs!

100 101 102 103

N

10−3

10−2

10−1

100

t N
/(
N
t 1

)

SNR

RAM

192 Gb

128 Gb

32 Gb

16 Gb
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