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o State—of-the—art of GW observations at 2G detectors

o 3G detectors: how big is the leap?

@ Parameter estimation for 3G detectors

o A key issue for 3G forecasts: the number of detections
e How the GW community is tackling the challenge
o GWFAST: why so —fast?

© Forecasts for 3G detectors with GWFAST: BBH, BNS and
NSBH at ET and ET+2CE
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Introduction: 2G GW detectors, where we stand
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Introduction: 2G GW detectors, where we stand

Thanks to LVK detections, we now have information on the distri-
bution of BBH up to z ~ 1, and some hints for BNS and NSBH
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LVK Collaboration, 2111.03634 (2021)
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Introduction: 3G GW detectors

2G detectors offer outstanding possibilities. . .
...but the potential of 3G detectors is unprecedented

ET:

Between 100 m and 300 m underground,;
Six 10 km detectors arranged in a triangle
with “xylophone” design:

— Cryogenic for LF and high power at HF;
— No blind spots;

— Sensitive to both GW polarizations;
Proposed more than 10 years ago (Punturo
et al. (2010), Hild et al. (2011)) and in-
cluded in ESFRI roadmap in 2021.
Science case in Maggiore et al. (2020)

ET Collaboration created a few months ago!

Francesco lacovelli Contact: Francesco.lacovelli@unige.ch


https://iopscience.iop.org/article/10.1088/0264-9381/27/19/194002
https://iopscience.iop.org/article/10.1088/0264-9381/27/19/194002
https://iopscience.iop.org/article/10.1088/0264-9381/28/9/094013
https://iopscience.iop.org/article/10.1088/1475-7516/2020/03/050/meta
https://www.unige.ch/sciences/physique/theorique/en/

Introduction

2G GW detectors, where we stand
3G GW detectors

Introduction: 3G GW detectors

2G detectors offer outstanding possibilities. ..
... but the potential of 3G detectors is unprecedented

CE:

Two facilities of 40 km and 20 km:
length reduces many noise sources
(shot, radiation pressure,. .. );
Tunable design:

— can be optimized for CBCs;

— can be optimized for BNS PM;

CE white paper in 2019 (Reitze et al.
(2021)) and CE Horizon Study docu-
ment recently published (Evans et al.
(2021))
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Introduction: 3G GW detectors

Thanks to their technological advancements and the bigger
facilities, ET and CE will have a broader frequency range and
sensitivities improved more than 10 times compared to LVK
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Assessing the capabilities of 3G detectors is fundamental
to take informed decisions!
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PE at 3G detectors: challenged by the numbers

One of the key challenges when performing studies for ET and CE
that emerged in recent years is the number of detectable sources

| Network || BBH/yr | BNS/yr | NSBH/yr |
LVK-04 0(10%) O(1 - 10) O(1 —10)
ET O(10%) 0(10* —10%) | O(10° —10%)

ET+2CE || O(10* — 10°) | O(10* —10°) | O(10* — 10%)

Currently used Bayesian parameter estimation codes, like BILBY,
can take O(1day/ev) to perform the analysis. ..

...and we do not have 10° days :'(
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PE at 3G detectors: Fisher codes

Various groups all across the world started to tackle the problem,
and by now there are three public codes that can perform such a
complex analysis exploiting the Fisher matrix formalism:

cwBeNcH: a novel Fisher information package for gravitational benct king
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GWFISH: A simulation software to evaluate parameter-estimation capabilities of
gravitational-wave detector networks

Jan Harms'2, Ulyana Dupletsal 2, Biswajit Banerjee!?, Marica Branchesi?, Boris Goncharov'2,
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GWFAST: a Fisher information matrix Python code for third-generation gravitational-wave detectors
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see also TiDoFM, Li et al. (2022) and Pieroni et al. (2022)
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PE at 3G detectors: Fisher codes

These independent codes, all featur-
ing some peculiar implementations,
have been cross—checked to assess their
agreement in the context of the ET
OSB Div9

GWBENCH, GWFISH and GWFAST have been used to produce different
science cases for 3G detectors this year:

— Borhanian, Sathyaprakash (2022)

— Ronchini et al. (2022)

— FI, Mancarella, Foffa, Maggiore (2022)

Each paper focuses on some particular aspects, but all of
them contribute to the blossoming future of GW science!
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PE at 3G detectors: GWFAST

GWFAST is particularly tuned towards high computational speed,
user friendliness, and accuracy in derivative evaluation (which is
the key element of the Fisher approximation), in particular:

— derivatives are computed
using automatic
differentiation with af%

— the code is written in pure
Python (also the waveforms!
See WF4Py)

— vectorization is exploited to
handle multiple events at a
time, even on a single CPU

GWFAST needs < 1 day to run the PE on 10° events!
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PE at 3G detectors: GWFAST

To asses the reliability of GWFAST we performed the PE analyses
on the samples of real GW events with high SNR and good sky
location, finding consistent results
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Forecasts with GWFAST: BBHs at 3G detectors

Simulating synthetic merger populations, based on the latest LVK
results, through GWFAST it is possible to assess the capabilities of
GW detectors, comparing among different networks and configura-
tions and for different sources
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Forecasts with GWFAST: BBHs at 3G detectors
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Forecasts with GWFAST: NSBHs at 3G detectors

ET+2CE

ET NSBH
10
0
w .
o 10 10
z = w0 -o-- - 2
g
A ] s o g
B
- ! 10
w0 g
102 10! 100 o
Adp/dy
ET+2CE NSBH
10
10
s s e
2 3
z 1044 =102 - —e- z § 104 z
< <
10 10 1078 -
gap!
100 til 10 e T 10!

10!

Adp/dy,

Francesco lacovelli

Adp/dy

: Francesco.lacovelli@unige



https://www.unige.ch/sciences/physique/theorique/en/

Thanks for your attention. .. questions?

| am also available at Francesco.lacovelli@unige.ch
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GW parameter estimation: the GW likelihood

A GW signal as observed by a detector can be expressed as

[ S(t) = ho(t) + n(#) ]

Defining the inner product for any two time-domain signals as

(a]b) :4Re{/ooodf W} — SNR = (ho| ho)"*

we have for the GW likelihood, choosing a waveform model h,

L(s ] 0) o exp{—(s — h(0) [ s — h(0)) /2}
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GW parameter estimation: MCMC timing for PE

Performing a full Bayesian PE for a GW signal via an MCMC
sampling of the likelihood is computationally expensive

| Signal H Sampler ‘ ng ‘ n;.’fmples
DYNESTY | 2.2x10% | 15000
BBH s
BILBY-MCMC 3 x 10 5000

| BNS || BriBY-McMc | 25 x 10° | 5000 |

Ashton, Talbot (2021)

With BILBY it can take 2 O(1 day/ev) to perform the estimation

Full PE is not feasible for 10° events
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GW parameter estimation: Fisher matrix

In the linearized signal approximation / high—SNR limit, the GW
likelihood can be approximated as a multivariate Gaussian with
covariance

COVij = F;l s Fz’j = — <818J log ,C(S | 0)>n o = (8%}2,(0) ‘ 8]h(0)) 0
0 0

I';; being the Fisher matrix

The key ingredients are then computing derivatives
and. ..speed!
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GWFAST implementations: derivatives

Usually derivatives are computed using finite difference techniques,
but this has some limitations, consider e.g.

f() = sin (In (V&) = f'(x) = cos (In (v/a)) /22

eps = le-5
print((f(10.+eps) - f(10.))/eps - fp(10.))

0.003476493

Every function with a closed form expression, however complex, is
built from simple operations (+, —, X, <), and well-known functions
(exp, cos, In, ... ) whose derivative is trivial.

What a pity a machine cannot understand it. . . wait, it can!
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GWFAST implementations: derivatives

Automatic differentiation is a technique to make a machine com-
pute derivatives of any order in a pseudo—analytic way, iteratively
applying the chain rule on a given function.

GWFAST uses the module JAX for automatic differentiation, that ap-

plied to our example function gives

" JAXfp = jax.grad(f)
print(JAXfp(10.) - fp(10))

V' /'Y /[ A
[/

™t 0.0

The only requirement is to write the function in a way the machine
can understand, in our case pure Python...but LAL is written in C
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GWFAST implementations: waveforms

To make JAX work we translated IMRPhenomXAS

the waveform models in Python  1®
and carefully checked the adher- -
ence with their originals. g 107

We released them also as a sep- 10-2] —— WF4Py
arate module, WF4Py, which fea-
tures:

TaylorF2,

IMRPhenomD,
IMRPhenomD_NRTidalv2,
IMRPhenomHM, .
IMRPhenomNSBH, el -
IMRPhenomXAS f (Hz)
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GWFAST implementations: vectorization

Having a pure Python code

. . . . 10[) SNR
and using JAX, it is possible to . o
exploit what is called vector- ' s
ization, i.e. the possibility to w0 s ' il
perform calculations for multi- = ! .,
ple events at a time even on = T,
a single CPU, not resorting to . . |
for loops. it
This makes GWFAST ideal to 107 10! 102 i

handle large catalogs!
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