Forecasting the detection capabilities of third-generation gravitational-wave detectors using GWFAST

Francesco lacovelli

Based on arXiv:2207.02771 and arXiv:2207.06910, in collaboration with: Michele Mancarella, Stefano Foffa, Michele Maggiore

University of Geneva (UNIGE) - Department of Theoretical Physics

PUMA22 – Sestri Levante 2022

Outline

Introduction

- State–of–the–art of GW observations at 2G detectors
- 3G detectors: how big is the leap?
- Parameter estimation for 3G detectors
 - A key issue for 3G forecasts: the number of detections
 - How the GW community is tackling the challenge
 - GWFAST: why so <u>fast</u>?
- Forecasts for 3G detectors with GWFAST: BBH, BNS and NSBH at ET and ET+2CE

・ 同 ・ ・ 三 ・ ・ 三 ・ 三 !

2G GW detectors, where we stand 3G GW detectors

Introduction: 2G GW detectors, where we stand

Masses in the Stellar Graveyard

2G GW detectors, where we stand 3G GW detectors

Introduction: 2G GW detectors, where we stand

Thanks to LVK detections, we now have information on the distribution of BBH up to $z \sim 1$, and some hints for BNS and NSBH

 $\begin{aligned} R_{0,\text{BBH}} &= 10.3 - 27 \,\text{Gpc}^{-3} \,\text{yr}^{-1} \\ R_{0,\text{BNS}} &= 10 - 1700 \,\text{Gpc}^{-3} \,\text{yr}^{-1} \\ R_{0,\text{NSBH}} &= 7.8 - 140 \,\text{Gpc}^{-3} \,\text{yr}^{-1} \end{aligned}$

LVK Collaboration, 2111.03634 (2021)

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへや

2G GW detectors, where we stand 3G GW detectors

Introduction: 3G GW detectors

2G detectors offer outstanding possibilities...

... but the potential of 3G detectors is unprecedented

ET:

Between 100 m and 300 m underground; Six 10 km detectors arranged in a triangle with "xylophone" design:

- Cryogenic for LF and high power at HF;
- No blind spots;
- Sensitive to both GW polarizations;

Proposed more than 10 years ago (Punturo et al. (2010), Hild et al. (2011)) and included in ESFRI roadmap in 2021. Science case in Maggiore et al. (2020)

▲御▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

ET Collaboration created a few months ago!

2G GW detectors, where we stand 3G GW detectors

Introduction: 3G GW detectors

2G detectors offer outstanding possibilities... ...but the potential of 3G detectors is unprecedented

CE:

Two facilities of 40 km and 20 km: length reduces many noise sources (shot, radiation pressure,...); Tunable design:

- can be optimized for CBCs;
- can be optimized for BNS PM;

CE white paper in 2019 (Reitze et al. (2021)) and CE Horizon Study document recently published (Evans et al. (2021))

・ロト ・同 ト ・ヨト ・ヨト ・ショウ ショー

2G GW detectors, where we stand 3G GW detectors

Introduction: 3G GW detectors

Thanks to their technological advancements and the bigger facilities, ET and CE will have a broader frequency range and sensitivities improved more than 10 times compared to LVK

Assessing the capabilities of 3G detectors is fundamental to take informed decisions!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

PE at 3G detectors: challenged by the numbers

One of the key challenges when performing studies for ET and CE that emerged in recent years is the number of detectable sources

BBH/yr	BNS/yr	NSBH/yr
$\mathcal{O}(10^2) \\ \mathcal{O}(10^4) \\ \mathcal{O}(10^4 - 10^5)$	$\mathcal{O}(1-10)$ $\mathcal{O}(10^3-10^5)$ $\mathcal{O}(10^4-10^5)$	$\mathcal{O}(1-10)$ $\mathcal{O}(10^3 - 10^4)$ $\mathcal{O}(10^3 - 10^5)$
	$\frac{\text{BBH/yr}}{\mathcal{O}(10^2)} \\ \mathcal{O}(10^4) \\ \mathcal{O}(10^4 - 10^5)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Currently used Bayesian parameter estimation codes, like BILBY, can take O(1 day/ev) to perform the analysis...

... and we do not have 10^5 days :'(

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Challenged by the numb PE at 3G detectors Fisher codes Forecasts with GWFAST GWFAST

PE at 3G detectors: Fisher codes

Various groups all across the world started to tackle the problem, and by now there are three public codes that can perform such a complex analysis exploiting the Fisher matrix formalism:

GWBENCH: a novel Fisher information package for gravitational-wave benchmarking

S. Borhanian1,2

¹Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University, University Park, PA 16802, USA ²Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany (Dated: August 31, 2021)

GWFISH: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks

Jan Harms^{1,2}, Ulyana Dupletsa^{1,2}, Biswajit Banerjee^{1,2}, Marica Branchesi^{1,2}, Boris Goncharov^{1,2}, Andrea Maselli^{1,2}, Ana Carolina Silva Oliveira³, Samuele Ronchim^{1,2}, and Jacopo Tissino^{1,2} ¹Gran Saso Science Institute (CSSI), 1-67100 LAyadia, Italy ²INFN, Laboratori Nazionali del Gran Sasso, I-67100 Asseryi, Italy and ³Department of Physics, Columbia University in the City of New York, New York, NY 10027, USA (Date: May 6, 2022)

GWFAST: a Fisher information matrix Python code for third-generation gravitational-wave detectors

FRANCESCO IACOVELLI ⁽⁰⁾,¹ MICHELE MANCARELLA ⁽⁰⁾,¹ STEFANO FOFFA ⁽⁰⁾,¹ AND MICHELE MAGGIORE ⁽⁰⁾

¹Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4, Switzerland

Francesco Jacovelli

see also TiDoFM, Li et al. (2022) and Pieroni et al. (2022)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Challenged by the numbers Fisher codes GWFAST

PE at 3G detectors: Fisher codes

These independent codes, all featuring some peculiar implementations, have been cross-checked to assess their agreement in the context of the ET OSB Div9

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

GWBENCH, GWFISH and GWFAST have been used to produce different science cases for 3G detectors this year:

- Borhanian, Sathyaprakash (2022)
- Ronchini et al. (2022)
- FI, Mancarella, Foffa, Maggiore (2022)

Each paper focuses on some particular aspects, but all of them contribute to the blossoming future of GW science! Introduction Challenged by the n PE at 3G detectors Forecasts with GWFAST GWFAST

PE at **3G** detectors: GWFAST

GWFAST is particularly tuned towards high computational speed, user friendliness, and accuracy in derivative evaluation (which is the key element of the Fisher approximation), in particular:

 $\begin{array}{l} \Longrightarrow \ \text{derivatives are computed} \\ \text{using automatic} \\ \text{differentiation with } \checkmark \end{array}$

- ⇒ the code is written in pure Python (also the waveforms! See WF4Py)
- \implies vectorization is exploited to handle multiple events at a time, even on a single CPU

(日) (同) (王) (王) (王)

= 200

GWFAST needs $\lesssim 1 \text{ day to run the PE on } 10^5 \text{ events!}$

Introduction Challenged by the num PE at 3G detectors Fisher codes Forecasts with GWFAST GWFAST

PE at 3G detectors: GWFAST

To asses the reliability of GWFAST we performed the PE analyses on the samples of real GW events with high SNR and good sky location, finding consistent results

= 200

BBHs at 3G detectors BNSs at 3G detectors NSBHs at 3G detectors

Forecasts with GWFAST: BBHs at 3G detectors

Simulating synthetic merger populations, based on the latest LVK results, through GWFAST it is possible to assess the capabilities of GW detectors, comparing among different networks and configurations and for different sources

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

BBHs at 3G detectors BNSs at 3G detectors NSBHs at 3G detectors

Forecasts with GWFAST: BBHs at 3G detectors

Francesco lacovelli Contact: Francesco.lacovelli@unige.ch

BBHs at 3G detectors BNSs at 3G detectors NSBHs at 3G detectors

Forecasts with GWFAST: BNSs at 3G detectors

Introduction BBI PE at 3G detectors BNS Forecasts with GWFAST NSE

BBHs at 3G detectors BNSs at 3G detectors NSBHs at 3G detectors

Forecasts with GWFAST: NSBHs at 3G detectors

-

Thanks for your attention... questions?

I am also available at Francesco.lacovelli@unige.ch

GW parameter estimation GWFAST implementations the GW likelihood MCMC timing for Fisher matrix

GW parameter estimation: the GW likelihood

A GW signal as observed by a detector can be expressed as

$$s(t) = h_0(t) + n(t)$$

Defining the inner product for any two time–domain signals as

$$(a \mid b) = 4 \operatorname{Re}\left\{\int_0^\infty \mathrm{d}f \; \frac{\tilde{a}^*(f) \,\tilde{b}(f)}{S_n(f)}\right\} \implies \operatorname{SNR} = (h_0 \mid h_0)^{1/2}$$

we have for the GW likelihood, choosing a waveform model h,

$$\mathcal{L}(s \mid \boldsymbol{\theta}) \propto \exp\{-\left(s - h(\boldsymbol{\theta}) \mid s - h(\boldsymbol{\theta})\right)/2\}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国

the GW likelihood MCMC timing for PE Fisher matrix

GW parameter estimation: MCMC timing for PE

Performing a full Bayesian PE for a GW signal via an MCMC sampling of the likelihood is computationally expensive

Signal	Sampler	n_ℓ	$n_{ m samples}^{ m eff}$
BBH	DYNESTY BILBY-MCMC	$\begin{array}{c} 2.2\times10^8\\ 3\times10^8 \end{array}$	$15000 \\ 5000$
BNS	BILBY-MCMC	2.5×10^9	5000

Ashton, Talbot (2021)

With BILBY it can take $\gtrsim \mathcal{O}(1 \text{ day/ev})$ to perform the estimation

Full PE is not feasible for 10^5 events

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

the GW likelihood MCMC timing for PE Fisher matrix

GW parameter estimation: Fisher matrix

In the linearized signal approximation / high–SNR limit, the GW likelihood can be approximated as a multivariate Gaussian with covariance

$$\operatorname{Cov}_{ij} = \Gamma_{ij}^{-1}, \quad \Gamma_{ij} \equiv -\left. \langle \partial_i \partial_j \log \mathcal{L}(s \,|\, \boldsymbol{\theta}) \right\rangle_n \bigg|_{\boldsymbol{\theta}_0} = \left. \left. (\partial_i h(\boldsymbol{\theta}) \,|\, \partial_j h(\boldsymbol{\theta})) \right|_{\boldsymbol{\theta}_0}$$

 Γ_{ij} being the Fisher matrix

The key ingredients are then computing derivatives and...speed!

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

GWFAST implementations: derivatives

Usually derivatives are computed using finite difference techniques, but this has some limitations, consider e.g.

$$f(x) = \sin\left(\ln\left(\sqrt{x}\right)\right) \implies f'(x) = \cos\left(\ln\left(\sqrt{x}\right)\right)/2x$$

eps = 1e-5
print((f(10.+eps) - f(10.))/eps - fp(10.))
0.003476493

Every function with a closed form expression, however complex, is built from simple operations $(+, -, \times, \div)$, and well–known functions (\exp, \cos, \ln, \dots) whose derivative is trivial.

What a pity a machine cannot understand it...wait, it can!

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ◆ ●

GWFAST implementations: derivatives

Automatic differentiation is a technique to make a machine compute derivatives of any order in a pseudo–analytic way, iteratively applying the *chain rule* on a given function.

GWFAST uses the module JAX for automatic differentiation, that applied to our example function gives

JAXfp = jax.grad(f)
print(JAXfp(10.) - fp(10))

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

0.0

The only requirement is to write the function in a way the machine can understand, in our case pure Python... but LAL is written in C

GW parameter estimation GWFAST implementations Derivatives Waveforms Vectorization

GWFAST implementations: waveforms

To make JAX work we translated the waveform models in Python and carefully checked the adherence with their originals.

We released them also as a separate module, WF4Py, which features:

TaylorF2, IMRPhenomD, IMRPhenomD_NRTidalv2, IMRPhenomHM, IMRPhenomNSBH, IMRPhenomXAS

伺 ト イヨ ト イヨト

Derivatives Waveforms Vectorization

GWFAST implementations: vectorization

Having a pure Python code and using JAX, it is possible to exploit what is called *vectorization*, i.e. the possibility to perform calculations for multiple events at a time even on a single CPU, not resorting to for loops.

This makes GWFAST ideal to handle large catalogs!

伺 ト イヨ ト イヨト