

Toward an independent reconstruction of the expansion history of the Universe

Nicola Borghi

University of Bologna

with Michele Moresco, Andrea Cimatti, Lucia Pozzetti, Alexandre Huchet, Salvatore Quai, Kang Jiao

> Borghi et al. 2022a (ApJ 927-164, arXiv:2106.14894)

> Borghi et al. 2022b (ApJL 928-L4, arXiv:2110.04304)

> Jiao et al. 2022 (submitted, arXiv:2205.05701)

Assuming a FLRW metric:
$$H(z) = \frac{\dot{a}}{a} = -\frac{1}{1+z} \frac{dz}{dt}$$

Jimenez & Loeb (2002)

- \checkmark Direct measure of H(z)
- ✓ Differential approach
- ✓ Cosmological model-independent ideal to test cosmological models

Assuming a FLRW metric: $H(z) = \frac{\dot{a}}{a} = -\frac{1}{1+z} \frac{dz}{dt}$ Jimenez & Loeb (2002)

- ✓ Direct measure of H(z)
- ✓ Differential approach
- ✓ Cosmological model-independent ideal to test cosmological models

Key requirements:

- 1. Pure sample of tracers
- 2. Robust *dts* **w/o cosmological priors**

Most massive and passive galaxies

- Oldest galaxies at each redshift (e.g., Cowie et al. 1996; Cimatti et al. 2004; Thomas et al. 2005, 2010)
- More synchronized SFHs

Most massive and passive galaxies

- Oldest galaxies at each redshift (e.g., Cowie et al. 1996; Cimatti et al. 2004; Thomas et al. 2005, 2010)
- More synchronized SFHs

Most massive and passive galaxies

- Oldest galaxies at each redshift (e.g., Cowie et al. 1996; Cimatti et al. 2004; Thomas et al. 2005, 2010)
- More synchronized SFHs

... but minimizing the contamination is fundamental!

> Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models

- > Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models
- > Measure galaxies' ages, then derive age(z): photometry, full-spectrum fitting, Lick indices

- > Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models
- > Measure galaxies' ages, then derive age(z): photometry, full-spectrum fitting, Lick indices

- > Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models
- > Measure galaxies' ages, then derive age(z): photometry, full-spectrum fitting, Lick indices

- > Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models
- > Measure galaxies' ages, then derive age(z): photometry, full-spectrum fitting, Lick indices

- > Measure the D4000 index \rightarrow dt = A(...)*dD4000 where A(...) calibrated from SPS models
- > Measure galaxies' ages, then derive age(z): photometry, full-spectrum fitting, Lick indices

O repeat by varying SPS models & ingredients to account for systematics!

The LEGA-C ESO survey (0.6 < z < 1)

(van der Wel et al. 2016 and 2021 and Straatman et al. 2018)

2 deg² - COSMOS field;
 K_{s,lim} = 20.7 - 7.5 log((1+z)/1.8)

VLT / VIMOS HR-Red;
 R ~ 3500; S/N ≥ 20; Δλ ~ 500 Å

Selection of passive galaxies

(see also Renzini 2006, Franzetti et al. 2007, Moresco et al. 2013)

1. NUVrJ (Ilbert et al. 2013)

Selection of passive galaxies

(see also Renzini 2006, Franzetti et al. 2007, Moresco et al. 2013)

- 1. NUVrJ (Ilbert et al. 2013)
- 2. EW[OII]λ3727 < 5 Å cut (e.g., Mignoli et al. 2009)

Selection of passive galaxies

(see also Renzini 2006, Franzetti et al. 2007, Moresco et al. 2013)

- 1. NUVrJ (Ilbert et al. 2013)
- 2. EW[OII]λ3727 < 5 Å cut (e.g., Mignoli et al. 2009)
- 3. Visual inspection of [OII] λ 3727 and [OIII] λ 5007 regions
 - \rightarrow 350 (22%) massive and passive galaxies with $~\langle {\rm sSFR/yr} \rangle = -12.1$

Stellar population properties – Observed trends (mean)

Z

Stellar population properties - ANALYSIS

- 1. Thomas, Maraston & Johannson 2011 (TMJ) SSP models \rightarrow (*age*, [Z/H], [α /Fe])
- 2. Optimized set of spectral indices:
- 3. Bayesian approach with uninformative priors (no cosmological priors!)

> Constraints for **140 individual** passive galaxies

 $\langle S/N \rangle \simeq 26 \, per resol.$ element

 $\sigma_{age} \simeq 0.4 \text{ Gyr}, \quad \sigma_{[\mathrm{Z/H}],[\alpha/\mathrm{Fe}]} \simeq 0.05 \text{ dex}$

Stellar population properties - RESULTS

Stellar population properties - RESULTS

Stellar population properties - RESULTS

 \blacktriangleright mass downsizing, two nearly parallel age-z relations, no clear evolution in [Z/H]-z and [α /Fe]-z

$$H(z = 0.75) = 98.8 \pm 24.8(stat) \pm 22.7(syst)$$

- First H(z) from the analysis of the stellar population (age, [Z/H], and [α/Fe]) of individual galaxies
 - poorly mapped redshift range
 - near to the transition z (~0.7)
 - syst: set of indices, binning, SP model (Vazdekis+15), and SFH

$$H(z = 0.75) = 98.8 \pm 24.8(stat) \pm 22.7(syst)$$

- First H(z) from the analysis of the stellar population (age, [Z/H], and [α/Fe]) of individual galaxies
 - poorly mapped redshift range
 - near to the transition z (~0.7)
 - syst: set of indices, binning, SP model (Vazdekis+15), and SFH
- With different sets of spectral features: ±1Gyr absolute ages

...but final H(z) is robust (<0.2 σ)

A new measurement of H(z) – Recent update

$$H(z = 0.75) = 98.8 \pm 24.8(stat) \pm 22.7(syst)$$

$$(z = 0.80) = 113.1 \pm 15.2(stat)^{+24.2}_{-4.0}(syst)$$

- Spectral features
- Full-spectrum fitting

Spectroscopy + Photometry Observed spectrum (ID=215424) Observed photometry 6800 7300 7800 8800 $\lambda/\text{Å}$ Observed photomet 4.1 4.3 4.6 $\log_{10}(\lambda/\text{\AA})$ 500 $^{1-}_{M} \frac{400}{M} = \frac{1}{M} \frac{1}{M$ 4.0 3.00.50.0 -3.5Lookback Time/ Gyr

- Jiao et al. (submitted, arXiv:2205.05701)
- Completely different methods, SPS models, & assumptions
 - Full-spectrum fitting (all the 350 CC in LEGA-C)
 - Added photometric data & calibration
 - Extended SFH: τ~0.4 Gyr
- Understood offsets in the absolute ages (~0.5 Gyr older w.r.t. Borghi et al. 2022a), but final H(z)s values are consistent

$$d_{\rm L} \approx \frac{c \, z}{H_0} + \mathcal{O}^2(z)$$

Two compact objects in (adiabatically) quasi-circular orbits (15 parameters, 8 intr. and 7 extr.):

- Component masses: m_1, m_2
- Component spins: \vec{S}_1, \vec{S}_2 (2 × 3 params)
- Source distance: r
- Sky location (RA, DEC): α , δ
- Orbital plane orientation: inclination $\iota,$ polarization angle ψ
- At coalescence: phase ϕ_c , time t_c

... in the context of an expanding Universe (amplitude is diluted, phase is redshifted):

- Distance \rightarrow luminosity distance $d_L = a_0 r(1+z)$
- Degeneracy: $\{m, S\}$ at $z \leftrightarrow \{(1+z)m, (1+z)^2S\}$ at z = 0

$$h(t) \propto rac{\mathcal{M}_z^{5/3} f(t)^{2/3}}{d_L} F_{+, imes}(angles) \cos(\phi(t))$$
 (Schutz 19)

(Schutz 1986; Holz & Hughes, 2005)

 $d_{\rm L} \approx \frac{c \, z}{H_0} + \mathcal{O}^2(z)$

THE COUNTERPART METHOD (BRIGHT SIRENS)

GW170817 (BNS)

- **d**_L from GWs
- z from the host galaxy (NGC 4993)

LIGO/VIRGO COLLABORATION & ESO

Gravitational wave cosmology – STANDARD SIRENS $d_{\rm L} \approx \frac{c z}{H_0} + O^2(z)$

THE STATISTICAL METHOD (DARK SIRENS)

$$d_{\rm L} \approx \frac{c \, z}{H_0} + \mathcal{O}^2(z)$$

- Astrophysical properties of the binary population (e.g. source-frame mass distribution, merger rate in z, ...)
- Galaxy gatalogs as z prior,
- Compare GW and galaxies spatial clustering

$$d_{\rm L} \approx \frac{c \, z}{H_0} + \mathcal{O}^2(z)$$

- **Astrophysical properties of the binary population** (e.g. source-frame mass distribution, merger rate in z, ...)
- Galaxy gatalogs as z prior,
- Compare GW and galaxies spatial clustering

Current activity: Joint inference of cosmo & astroph params. using galaxies (with M. Mancarella, M. Maggiore, M. Moresco)

Future: Synergies between 3rd gen GW detectors (e.g., **ET**) and future galaxy surveys (e.g., **Euclid**; NB, M. Moresco, A. Cimatti)

 $d_{\rm L} \approx \frac{c \, z}{H_0} + \mathcal{O}^2(z)$

- **Astrophysical properties of the binary population** (e.g. source-frame mass distribution, merger rate in z, ...)
- Galaxy gatalogs as z prior,
- Compare GW and galaxies spatial clustering

Current activity: Joint inference of cosmo & astroph params. using galaxies (with M. Mancarella, M. Maggiore, M. Moresco)

Future: Synergies between 3rd gen GW detectors (e.g., **ET**) and future galaxy surveys (e.g., **Euclid**; NB, M. Moresco, A. Cimatti)

Expansion history – Synergies with different probes

The current CC's H(z) dataset & systematics

z	H(z)	$\sigma_{H(z)}$	Μ	reference	z	H(z)	$\sigma_{H(z)}$	Μ	reference
0.07	69.0	19.6	\mathbf{F}	Zhang et al. (2014)	0.4783	80.9	9	D	Moresco et al. (2016b)
0.09	69	12	\mathbf{F}	Simon et al. (2005)	0.48	97	62	\mathbf{F}	Stern et al. (2010)
0.12	68.6	26.2	\mathbf{F}	Zhang et al. (2014)	0.593	104	13	D	Moresco et al. (2012a)
0.17	83	8	\mathbf{F}	Simon et al. (2005)	0.68	92	8	D	Moresco et al. (2012a)
0.179	75	4	D	Moresco et al. (2012a)	0.75	98.8	33.6	\mathbf{L}	Borghi et al. (2021a)
0.199	75	5	D	Moresco et al. (2012a)	0.781	105	12	D	Moresco et al. (2012a)
0.20	72.9	29.6	\mathbf{F}	Zhang et al. (2014)	0.875	125	17	D	Moresco et al. (2012a)
0.27	77	14	\mathbf{F}	Simon et al. (2005)	0.88	90	40	\mathbf{F}	Stern et al. (2010)
0.28	88.8	36.6	\mathbf{F}	Zhang et al. (2014)	0.9	117	23	\mathbf{F}	Simon et al. (2005)
0.352	83	14	D	Moresco et al. (2012a)	1.037	154	20	D	Moresco et al. (2012a)
0.38	83	13.5	D	Moresco et al. (2016b)	1.3	168	17	\mathbf{F}	Simon et al. (2005)
0.4	95	17	\mathbf{F}	Simon et al. (2005)	1.363	160	33.6	D	Moresco (2015)
0.4004	77	10.2	D	Moresco et al. (2016b)	1.43	177	18	\mathbf{F}	Simon et al. (2005)
0.425	87.1	11.2	D	Moresco et al. (2016b)	1.53	140	14	\mathbf{F}	Simon et al. (2005)
0.445	92.8	12.9	D	Moresco et al. (2016b)	1.75	202	40	\mathbf{F}	Simon et al. (2005)
0.47	89.0	49.6	F	Ratsimbazafy et al. (2017)	1.965	186.5	50.4	D	Moresco (2015)

32 measurements

- D: D4000
- F: full-spectrum fitting

L: Lick indices

Full covariance matrix provided in Moresco et al. (2020), arXiv:2003.07362, https://gitlab.com/mmoresco/CCcovariance

$$\operatorname{Cov}^{\operatorname{tot}} = \operatorname{Cov}^{\operatorname{stat}} + \operatorname{Cov}^{\operatorname{met}} + \operatorname{Cov}^{\operatorname{SFH}} + \operatorname{Cov}^{\operatorname{young}} + \operatorname{Cov}^{\operatorname{IMF}} + \operatorname{Cov}^{\operatorname{st.spec.}} + \operatorname{Cov}^{\operatorname{SPS}}$$

