

Multimessenger studies at the Pierre Auger Observatory

Emanuele De Vito^a for the Pierre Auger Collaboration^b ^{au} ^aUniversità del Salento and INFN Lecce ^bObservatorio Pierre Auger, Av. San Martin Nórte 304, 5613 Malargüe, Argentina

The Pierre Auger Observatory

Surface Detector (SD):

1600 Water Cerenkov Detectors at 1.5 km
(~3000 km²) + 31 stations at 0.75 km
measure particle density at the ground

Fluorescence Detector (FD):

- 24 telescopes in 4 sites (FoV 1° - 30°) + 3 high elevation telescopes (FoV 30° - 60°)
- longitudinal profile with a calorimetric measurement

Precise measurement using **hybrid (SD+FD)** technique

Auger Upgrade adding new detectors (SSD, Radio antennas, Underground Muon Detectors) and faster electronics to increase our sensitivity

UHE Photon induced air showers

Hybrid and SD data selection

SD selection based on PCA Deviation from <LDF> vs <rise-time> using 5% of data and cutting with 50% photon efficiency

Photons upper limits

Ap. J. 933 (2022)125 low energy extension PoS(ICRC2021)373 Auger hybrid PoS(ICRC2019)398 Auger SD

- Disfavouring top-down models

Constraining mass and lifetime of dark matter particles

Constraining cosmogenic fluxes (need more exposure)

– With Auger Phase II more information to better discriminate the primary particle

Inclined shower and UHE Neutrino signature

The EM component in inclined **CR** showers (zenith $> 60^{\circ}$) almost completely absorbed by the atmosphere.

On the other hand, neutrinos have younger shower → broader signal in inclined event can be a neutrino signature

3 main channels:

- Down-Going Low (60° -75°)
- Down-Going High (75°-90°)
- Earth-Skimming (90°-95°)

E. De Vito for the P.A.Coll. - PUMA22

UHE Neutrino data selection

- Area over Peak is the sensitive variable
- Cut tuned on all the different channels
- Expected <1 bkg event in 50 years

Exposure dominated by the ES channel
DG channels become relevant at higher energies
(ES neutrinos absorbed in Earth)

Diffuse flux limits on UHE Neutrino

Pierre Auger Coll., JCAP 10 (2019) 022

– NO candidates found

- Maximum sensitivity at ~ 1 EeV
- Integral upper limits constrains different models.
- Expected up to 6 events in case of pure proton composition, 2 in case of p or mixed, 0.4 in case of pure iron
- Our increase in exposure allow us to disfavour pure proton models

Search for FD up-going air showers

Two "anomalous" events detected by ANITA with non-inverted polarity

 \rightarrow E ~ 0,2 EeV, exit angle ~ 30°

Fervent debate about the interpretation

Highly inclined events cannot be observed with SD \rightarrow Dedicated search using 14 years of FD data

FD sensitivity depends on E and $H_{\rm fi}$ of the primary particle

Differential exposure and signal expectation

Double differential exposure in H_{fi} vs E_{cal}

1 event found after the unblinding in line with the expected background

Integral upper limit:

$$F_{\gamma=1}^{95\%} = 3.6 \cdot 10^{-20} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$$
$$F_{\gamma=2}^{95\%} = 8.5 \cdot 10^{-20} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$$

Ongoing collaboration with ANITA to obtain their exposure and compare the results

Also studying other interesting scenario such as a tau-initiated showers (PoS (ICRC2021) 1145)

Conclusion

– The Pierre Auger Observatory gives its contribution to the International MM Community providing information at the highest energy

- High sensitivity for photons and neutrinos
 - → the non-observation provides important results, setting stringent limits and constraining exotic scenarios
- Also different follow-up analysis
 - \rightarrow GW170817 (Apjl 850 L35 2017)
 - → Neutrino and Photon GW stacked (Pos (ICRC2021) 968 and 973)
 - → TXS0506+056 (ApJ 902:105 (2020))

and joint searches

 \rightarrow ANTICATA (ApJ 934:164 (2022))

 The upgrade will provide more information allowing us to increase our sensitivity and background rejection

Thank you for your attention!