NAZARBAYEV UNIVERSITY

Distinguishing Time Delays from Multi-Messenger Transients with Deep Learning

Mikhail Denissenya, Eric V. Linder

Probing the Universe with Multimessenger Astrophysics September 27, 2022

Hubble Constant H₀

Afterglow Light Pattern 375,000 yrs.

Inflation

Quantum Fluctuations

Big Bang Expansion

13.77 billion years

Riess A. et al ApJL (2022)

Gravitationally Lensed Type Ia Supernovae

Probing Cosmic Expansion with Lensing Time Delays

Lensing time delays encode information on Hubble expansion rate

Only few lensed type Ia supernovae are resolved

We focus on unresolved lensed lightcurves from type Ia supernovae

UNRESOLVED

Lightcurve Fitting Approaches Log-normal Fitting

S. Bag, A.G. Kim, E.V. Linder, A. Shafieloo, ApJ (2021)

M. Denissenya, S. Bag, A.G. Kim, E.V. Linder, A. Shafieloo, MNRAS (2022)

$$F_{j}(t) \propto \frac{1}{t} e^{-\frac{(\ln t - b_{j})^{2}}{2\sigma_{j}^{2}}} \left(\sum_{k=1}^{4} \text{Chebyshef polynomials}\right)$$

Number of images: 2

Number of parameters: a few dozens

Freeform Fitting

$$F_{j}(t) = \sum_{i \in \text{images}} \mu_{i} U_{j}(t - \Delta t_{i})$$

Number of images: 2 or 4

Number of parameters: a few hundreds

Drawbacks:

- Markov Chain Monte Carlo optimization is time consuming (~ hours/system)
- Fits are robust for time delays ≥ 10 days
- One, two or four image classification is based on Goodness-of-Fit criterion

Freeform vs Log-normal

Idea: Let Neural Network estimate time delays from an ensemble of lensed lightcurves

Deep Learning Lensed Lightcurves

Hand Designed Model

Mapping Learned by Machine

Artificial Neural Network

Output:

Number of images Weights update rule

 W_2

input

$$w:\to w-\eta\Delta_w C$$

Error

where η is the learning rate

output

CNN2/4:

Neural Net for Classification (CNNc)

8000 training samples 2000 test samples $\Delta t_i \in [10, 14]$ days $\mu \in [0.25, 4]$

CNNc Neural Network Performance

11

Neural Net for Time Delay Estimation (CNN2) PyTorch conv1 1D convolutional+ReLU

8000 training samples 2000 test samples

(1,422) (16,422)

Lensing Time Delays: 2-image

Lensing Time Delays: 2-image

CNNc Net Test on Partial Lightcurves

Summary

- to $\gtrsim 6$ days.
- to $\times 4$ increase in the noise level.
- up to 40 days.

M. Denissenya, E. V. Linder MNRAS(2022), Vol515

• Deep learning allows to successfully distinguish lensed and unlensed systems, determine number of images and extract time delays with ~1 day precision down

• We obtain $\times 1000$ speed up compared to both the freeform and log-normal fitting approaches with MCMC technique. The neural network performance is robust up

• Our deep learning implementation reliably identifies the systems and estimates the time delays for lensed supernova lightcurves with missing early time observations

Thank you for your attention!