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Blazar 2.4 Sources of interest for time of flight studies

Figure 2.5: Unification scheme of AGN based on the viewing angle for radio-loud (with jets)
and radio-quiet sources (without jets). Figure taken from Beckmann & Shrader (2012).
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Figure 2.6: Light curve of the 2006 PKS 2155-304 Big flare. The light curve gives the integrated
flux above 200 GeV and uses a one minute binning. The horizontal dashed line represent the flux
observed from the Crab Nebula above 200 GeV. The full line is a fit of 5 peaks and a constant.
The figure is taken from Aharonian et al. (2007)
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AGN with a relativistic jet pointing toward the Earth

The spectral energy distribution displays two broad peaks

Blazars can be classified on the synchrotron peak frequency
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Extreme TeV Bl Lacs
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The second SED peak beyond 1 TeV

A hard sub-TeV intrinsic spectrum

The TeV emission is stable over years
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The model

Low magnetization is required (see
Biteau et al. 2020)

Thermal plasma: recollimation
shock + turbulence

Non-thermal particles: diffusive
shock acceleration + stochastic
acceleration

One zone Synchrotron Self
Compton model

Magnetic inhibition of recollimation instability 7

Figure 4. 3D rendering of the Lorentz factor in 3D solutions at t = 40.

same as the pure hydro model (HD). It exhibits transition from a
laminar to a fully turbulent flow at around z = 10, which is some-
what upstream of the reconfinement point in the steady-state solu-
tion, which is located at z ≈ 23 . The turbulence promotes entrain-
ment of the external gas, mixing, and jet deceleration. The Lorentz
factor reduces from Γ = 5 down to 2 . Γ . 3.

The recollimation instability also develops in the MHD2
model, but in contrast to MHD1 the transition to a turbulent state
is not observed. A closer inspection of the flow structure in the jet

cross-section (see figure 6) reveals that the azimuthal number of the
dominant mode gradually reduces from m ≈ 20 at z = 10 to m = 4
at z = 40. Presumably, once the growth of higher order modes satu-
rates, they get erased by numerical diffusion and the resultant flow
with a thicker transition layer between the jet and the external gas
can support only the modes of lowest order. At z = 40, the non-
linear m = 4 mode clearly dominates other modes (figure 6). One
can see that it is aligned with the Cartesian grid, and this implies a
strong bias due to the anisotropy of the numerical scheme.

© 0000 RAS, MNRAS 000, 000–000

See Matsumoto et al. 2021
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First attempt

Assumption: constant turbulence
spectrum

The rise in the sub-Tev range
steeper than the data

tdamp/tcas ∼β−1
a Ue/UB ≪ 1

The turbulence damping is not
negligible
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Numerical method

Assuming isotropy and homogeneity (i.e. no spatial diffusion):
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We must solve a system of two coupled Fokker-Planck equations

We decided to use the robust implicit Chang-Cooper algorithm

Kolmogorov phenomenology =⇒ Dk =Dk(k ,W ) =⇒ Non-linearity

We need a trick (see Larsen et al. 1985)
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1ES 0229+200

We apply our model to the prototypical extreme TeV Bl Lacs, i.e. 1ES 0229+200

Downstream region radius
R = 1.2×1016 cm

Alfvén velocity
va = 2×109 cm/s

Mean magnetic field
B = 15.9 mG

Injected electrons power
P ′
n = 7×1039 erg/s

Injected turbulence power
P ′
W = 7×1039 erg/s
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Electrons and turbulence spectra

The electrons spectrum and the energy peak increase until the cooling becomes
relevant. The final spectrum presents the following features:

Peak at γ∼ 106

Cut-off at γ≳ 106

Cut-off at γ≲ 104

10 1110 1010 910 8
kres [cm 1]

103 104 105 106 107

102

103

2 n
(

)[
cm

3 ]

Alberto Sciaccaluga Extreme TeV Bl Lacs 29 September 2022 9 / 10



Electrons and turbulence spectra

The turbulence cascades to larger wavenumbers until the electrons damping
becomes relevant. The final spectrum presents the following features:

Cut-off at k ≳ 10−10 cm−1

Power law at k ≲ 10−10 cm−1
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Conclusions and future perspectives

Our model was able to reproduce the SED of the prototypical extreme TeV
Bl Lacs 1ES 0229+200

Caveats
Necessary comparison with other SEDs
Check with MHD simulations

Improvements
Addition of IC cooling term (other non-linear term)
More accurate algorithm (e.g. Runge-Kutta Implicit-Explicit schemes)

For further details, see Sciaccaluga & Tavecchio 2022 (arXiv:2208.00699)
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