

Binary black hole mergers in young star clusters

Stefano Torniamenti

Main collaborators: M. Mapelli, S. Rastello, A. Ballone, M. Dall'Amico, U. N. Di Carlo

Torniamenti et al., arxiv.org/abs/2203.08163

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Formation channels of BBHs

LIGO-VIRGO O3: ~90 objects interpreted as the mergers of binary black holes (BBHs).

A few hundreds of GW detections might be sufficient to disentangle the main formation pathways of BBHs (Fishbach et al. 2017; Gerosa & Berti 2017; Bouffanais et al. 2019, 2020, 2021).

Isolated formation

- $m_1 \lesssim 40-65 \text{ M}_{\odot}$,
- mostly equal-mass systems ($q = m_2/m_1 \approx 1$),
- mostly aligned spins,
- zero eccentricity in the LVC band.

Dynamical formation in star clusters

- larger m_1 ,
- mass ratios: $0.1 \leq q \leq 1$,
- isotropic spin distribution,
- non-zero eccentricity in the LVC band (rare but not negligible).

Formation channels of BBHs

Dynamical interactions can favor the coalescence of BH binaries through dynamical hardening, and the formation of new BBHs via dynamical exchanges.

Dynamical formation in star clusters

- larger m_1 ,
- mass ratios: $0.1 \leq q \leq 1$,
- isotropic spin distribution,
- non-zero eccentricity in the LVC band (rare but not negligible).

Credits: Michela Mapelli

Dynamical formation in star clusters

Dynamics are important only in dense environments:

 $ho > 10^3 \, stars \, pc^{-3}$

BBHs in YSCs

Young star clusters

Mass: $10^2-10^5~\text{M}_{\odot}$

Age: 0 - 100 Myr

- Nursery of most massive stars (Lada & Lada 2003), which mainly form in binary systems (Moe & Di Stefano 2017).
- Short evolution time scales: $t_{rlx} \sim 10 100$ Myr (Portegies Zwart et al. 2010).
- Massive stars sink to the YSC center and interact with each other in $\lesssim 3$ Myr.
- Eventually disrupted by tidal interaction with the host galaxy.

Portegies Zwart et al. 2010

N-body simulations

NBODY6++GPU (Wang et al., 2015, 2016) & **MOBSE** (Giacobbo et al., 2018, Giacobbo & Mapelli 2018, 2019)

Initial conditions

Fractal initial conditions (Di Carlo et al., 2019).

Half-mass radius: $0.5 \text{ pc} < r_{hm} < 2 \text{ pc}$.

Two sets of star-clusters (Lada & Lada, 2003):

Low-mass clusters:

This work:

Compare the population of BBH mergers in lowmass and high-mass star clusters.

 $500~{\rm M}_\odot < M_{SC} < 800~{\rm M}_\odot$

• High-mass clusters:

 $5000 \text{ M}_{\odot} < M_{SC} < 8000 \text{ M}_{\odot}$

Observation-based (Sana et al. 2012, Moe & Di Stefano 2017) populations of stars and binaries **(Torniamenti et al., 2021).**

Metallicity: Z=0.002.

The star clusters are evolved up to 1.5 Gyr.

BBHs that have merged during the simulation + BBHs that will merge within a Hubble time (Peters 1964). **Original:** binaries bound since the origin of the cluster - **Exchanged:** formed trough dynamical encounters.

BBHs in YSCs

BBHs that have merged during the simulation + BBHs that will merge within a Hubble time (Peters 1964). **Original:** binaries bound since the origin of the cluster - **Exchanged:** formed trough dynamical encounters.

BBHs in YSCs

BBHs that have merged during the simulation + BBHs that will merge within a Hubble time (Peters 1964).

BBHs that have merged during the simulation + BBHs that will merge within a Hubble time (Peters 1964).

BHs in the PI mass gap

BHs in the PI mass gap can form from stellar mergers

- Merger product: exotic star, with an undersized He core with respect to the hydrogen-rich envelope.
- Its central properties (temperature and density) do not fall within the PI regime (e.g., Renzo et al. 2020; Costa et al. 2021, 2022; Ballone et al. 2022).
- Eventually, the stellar product directly collapses into a BH with $m_{\rm BH} > 60 {\rm ~M}_{\odot}$ (see also Di Carlo et al. 2019, 2020).

Ballone et al. 2022, arXiv:2204.03493 Costa et al. 2022, arXiv:2204.03492

BHs in the PI mass gap

High-mass clusters

- All BBHs with primary mass in the PI mass gap born via stellar collisions.
- Stellar collisions: explain the formation of intermediate-mass black holes above the upper mass gap $(m_1 > 200 \text{ M}_{\odot})$.

Take-home messages

Low-mass clusters:

• Most BBH mergers come from original binaries that undergo a common envelope phase.

High-mass clusters:

- Most BBH mergers are produced by dynamical encounters. These mergers have larger masses because they did not undergo a common envelope phase.
- Dynamical interactions produce a large number of mergers with $m_{\rm chirp} \sim 35 40 {\rm M}_{\odot}$.
- A non-negligible number of BH in the pair-instability mass gap and of IMBHs form.
- All the BHs in the pair-instability mass gap result from star-star mergers.

Thank you for your attention