

Supernova Remnants

Manami Sasaki

Dr. Karl Remeis Observatory Bamberg - Erlangen Centre for Astroparticle Physics

Remains of a supernova explosion.

Strong shock waves expand into the surrounding medium and

- ionize and heat the interstellar medium,
- distribute the heavy elements, which were created in the progenitor star and in the explosion,
- accelerate cosmic rays,
- and form **new structures** in the interstellar medium.

SNRs can be observed over the entire electromagnetic spectrum from

- radio: electron synchrotron emission,
- infrared: heated dust, cool ejecta,
- optical: Hα and forbidden (e.g. [SII]) line emission,
- X-rays: thermal emission of shocked hot gas, in some cases also non-thermal X-rays,
- gamma-rays: radioactive decay, Bremsstrahlung, inverse Compton, π^0 -decay.

SNR Cas A

Shocks are **common** in galaxies and occur, e.g., in:

- stellar winds,
- supernovae,
- accreting compact objects, or
- expanding HII regions.

Interstellar medium can be regarded as a fluid.

Pressure-driven disturbance in a compressible medium propagates faster than the sound speed.

➡ Discontinuity: shock wave.

Jump in fluid properties (density, velocity, pressure). Kinetic energy of the shock is **converted into heat**.

ζ Oph (Spitzer IRAC/MIPS, Credit: NASA/JPL-Caltech)

Continuum emission from **relativistic electrons** in SNR DA 530 at 1420 MHz.

Polarized intensity is shown by their length and direction of the E-field (left).

Kepler's SNR

Radio: Synchrotron from electrons

X-rays: Thermal Emission + Synchrotron

Thermal and Non-thermal X-ray Emission

SN 1006

X-ray: NASA/CXC/Rutgers/G.Cassam-Chenaï, J.Hughes et al.; Radio: NRAO/AUI/NSF/GBT/VLA/Dyer, Maddalena & Cornwell; Optical: Middlebury College/F.Winkler, NOAO/AURA/NSF/CTIO Schmidt & DSS

Thermal and Non-thermal X-ray Emission

Tycho's SNR

NASA/CXC/Rutgers/J.Warren & J.Hughes et al.

Non-thermal X-ray Emission

Tycho's SNR

Chandra data taken in 2003, 2007, 2009, and 2015.

Stripes in the southwestern region of the SNR, synchrotron X-rays in the region is time variable.

Enhanced magnetic fields in the blast wave region.

Detection of polarized emission with tangential polarization from Cas A in 3 - 6 keV band (Vink et al., 2022) with the Imaging X-ray Polarimetry Explorer (IXPE).
Polarization degree of 1.8 ± 0.3% for the total emission, 2.4% for synchrotron component only.

Map of χ^2 values for the polarization signal for the 3 - 6 keV band (left) and polarization degree map (right). Only pixels with confidence levels above 2 σ are shown. For pixels with > 3 σ confidence level the polarization angles are indicated with blue arrows.

Supernova Remnant Evolution

1. Free expansion (a few 100 yrs):

Constant expansion velocity and temperature.

Simulated density distribution (left) and ejecta emissivity for a 500 yr old SNR incl. particle acceleration (Ferrand et al., 2010)

Supernova Remnant Evolution

1. Free expansion (a few 100 yrs):

ANGEN CENTRE

Constant expansion velocity and temperature.

2. Sedov or adiabatic phase (1000 to 10 000 yrs):

Interaction of the blast wave with the ISM causes deceleration.

Reverse Shock runs into the ejecta.

Ejecta mixes with shocked ISM.

Simulated density distribution (left) and ejecta emissivity for a 500 yr old SNR incl. particle acceleration (Ferrand et al., 2010)

Supernova Remnant Evolution

1. Free expansion (a few 100 yrs):

Constant expansion velocity and temperature.

2. Sedov or adiabatic phase (1000 to 10 000 yrs):

Interaction of the blast wave with the ISM causes deceleration.

Reverse Shock runs into the ejecta.

Ejecta mixes with shocked ISM.

3. Radiative phase (10 000 to 100 000 yrs):
SNR has cooled to < 10⁶ K.
Radiates energy efficiently, cooling becomes non-negligible.
A thin shell is formed, which emits optical light.

Simulated density distribution (left) and ejecta emissivity for a 500 yr old SNR incl. particle acceleration (Ferrand et al., 2010)

Shocked Plasma

SNR 1E0102.2-7219 in the Small Magellanic Cloud:

IR, optical, and X-ray emission

Lines of highly ionised elements (H- and He-like).

Continuum: Bremsstrahlung, radiative recombination continuum (RRC), and the 2s→1s two-photon continuum from hydrogenic and helium-like ions.

Spectral model for SNR E0102

SN Types

Distribution of Elements in SNR Cas A

Chandra ACIS (Red = 0.5-1.5 keV, Green = 1.5-3.0 keV, Blue = 4.0-6.0 keV)

Chandra ACIS Upper right: silicon. Lower left: calcium. Lower right: iron. NASA/GSFC/U.Hwang et al.

NASA/CXC/MIT/UMass Amherst/M.D.Stage et a

Distribution of Elements in SNR Cas A

NASA/GSFC/U.Hwang et al.

Cold Ejecta

Manami Sasaki

PUMA22

Distribution of Ejecta

PUMA22

SNR IC 443

Chandra with radio and optical

Suzaku spectrum Magenta: radiative recombination continuum emission of H-like Mg, Si, and S

Yamaguchi et al. (2009)

Cygnus Loop SNR:

Excess emission near Fe L-complex at ~0.7 keV: charge exchange emission produced at sites where hot plasma interacts with (partially) neutral gas.

Manami Sasaki

PUMA22

Highly redshifted Fe lines (~800 km/s)

RLANGEN CENTRE

Neutral Fe I emission from interaction of cosmic rays with ambient medium? (Seen with NuSTAR, Bamba et al. 2018)

GeV to TeV Emission

SNRs interacting with molecular clouds: p-p interactions followed by π^0 decay

Wardle & Yusef-Zadeh (2002)

Fermi LAT 2 – 10 GeV count maps with VLA radio contours. Ellipse: shocked CO clumps, crosses: OH masers.

RX J1713.7-3946

Manami Sasaki

PUMA22

RX J1713.7-3946

TeV emission and neutral ISM Fukui et al. (2012)

Manami Sasaki

PUMA22

TeV Emission

TeV Emission

Manami Sasaki

PUMA22

ROSAT

TeV Emission

H.E.S.S.

-1.5

Mixed-morphology

SNRs with

molecular clouds

(d) W28

3.7

4.1

4.6

5.1

5.5

0.5 deg

Vela Jr non-thermal X-rays and TeV (a) W51C RX J1713.7-3946 0.5 deg (c) IC 443 HESS (>0.1 TeV) 40d00

H.E.S.S. Collaboration Manami Sasaki

Fermi (Thompson et al., 2012) PUMA22

3.3

2.8

2.4

0.5 dec

1.4

Manami Sasaki

TeV Emission

Leptonic scenario (Inverse Compton):

- Same particles responsible for synchrotron shell.
- Requires high shock velocities and downstream magnetic field of >10 μ G.

Hadronic scenario (pp, π^0 -decay):

• Requires high densities (> 10 cm⁻³) and high (amplified) magnetic field.

PUMA22

J. Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team

Old nearby SNR

D=300pc, age about 70 kyr

Very large extent of 25°

Emission very soft < 1 keV

C IV emission in Far-UV

Difficult to study due to large extent

J. Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team

Old nearby SNR D=300pc, age about 70 Very large extent of 25° Emission very soft < 1 k C IV emission in Far-UV Difficult to study due to extent

Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team

Old nearby SNR D=300pc, age about 70 Very large extent of 25° Emission very soft < 1 k C IV emission in Far-UV Difficult to study due to extent

Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team

Antlia SNR

J. Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team

Antlia SNR

Nearby SNR candidate

D < 240 pc, age > 1 Myr?

Gamma-Ray emission at 1.8 MeV (²⁶Al)

Very large extent of 25°

Low absorption $< 10^{21} \text{ cm}^{-2}$

FUV filaments (Fesen et al., 2021)

razov, M. Gilfanov (IKI), and eSASS team

Antlia SNR

Nearby SNR candidate

D < 240 pc, age > 1 Myr?

Gamma-Ray emission at 1.8 MeV (²⁶Al)

Very large extent of 25°

Low absorption $< 10^{21} \text{ cm}^{-2}$

FUV filaments (Fesen et al., 2021)

razov, M. Gilfanov (IKI), and eSASS team

Hoinga SNR

About 1200 SNRs are expected in the Milky Way, only 300 are known.

Newly detected SNR, confirmed in radio Low absorption $N_H = 3.6 \times 10^{20} \text{ cm}^{-2}$ Low temperature kT = 0.11 keV

Middle-aged nearby (D ~500 pc) SNR

eROSITA/MPE (X-ray, magenta) CHIPASS/SPASS/N. Hurley-Walker, ICRAR-Curtin (Radio, blue)

Vela and Friends

Puppis A SNR

PUMA22

Summary

Supernova remnants heat and create new structures in the ISM.

Are responsible for the **chemical enrichment** of galaxies.

Supernova remnants allow studies of

- supernova explosion mechanisms and nucleosynthesis,
- formation and processing of dust,
- interstellar shock waves,
- the origin of the **hot interstellar plasma**,
- interaction of shocks with dense medium and the impact on star formation,
- particle acceleration and origin of galactic cosmic rays.

GeV and TeV obervations indicate inverse Compton as well as pion decay processes in and around SNR shocks.

Self-consistent modeling of the spectrum from radio to TeV helps us to understand both heating and acceleration processes in SNRs.